Green Emission from Er-Doped AlN Thin Films Prepared by RF Magnetron Sputtering

2000 ◽  
Vol 621 ◽  
Author(s):  
V. I. Dimitrova ◽  
F. Perjeru ◽  
Hong Chen ◽  
M. E. Kordesch

ABSTRACTThin films of Er doped AlN, ∼ 200 nm thick, were grown on indium tin oxide/aluminum titanium oxide/glass substrates using RF magnetron sputtering in a pure nitrogen atmosphere. To optically activate Er all films were subject to post-deposition annealing in flowing nitrogen atmosphere at atmospheric pressure at temperatures between 1023-1223 K for 10-60 minutes. The visible cathodoluminescence (CL) in the green was detected at both 11 K and 300K. The strongest CL peaks were observed at 558 nm and 537 nm (11 K), which correspond to the transitions from 4S3/2 and 2H11/2 to the 4I15/2 ground level. Electroluminescence (EL) studies of AlN:Er alternating-current thin-film electroluminescent (ACTFEL) devices were performed at 300 K. The turn-on voltage was found to be around 80-100 V for our ACTFEL devices. The intensity of the EL emission rapidly increases with the voltage increasing in the investigated range of 110-130 V.

2012 ◽  
Vol 8 (6) ◽  
pp. 460-463 ◽  
Author(s):  
Shi-na Li ◽  
Rui-xin Ma ◽  
Liang-wei He ◽  
Yu-qin Xiao ◽  
Jun-gang Hou ◽  
...  

2020 ◽  
Vol 41 (4) ◽  
pp. 929-937
Author(s):  
Soheil MOBTAKERİ ◽  
Ebru SENADİM TUZEMEN ◽  
Ali ÖZER ◽  
Emre GÜR

2017 ◽  
Vol 24 (02) ◽  
pp. 1750021 ◽  
Author(s):  
NAJAM UL HASSAN ◽  
ZAHID HUSSAIN ◽  
M. NAEEM ◽  
ISHFAQ AHMAD SHAH ◽  
G. HUSNAIN ◽  
...  

Holmium (Ho)-doped AlN thin films of thicknesses 60, 90 and 300 nm were grown in pure nitrogen atmosphere via RF magnetron sputtering. The deposited thin films were irradiated with protons at a dose of 5[Formula: see text]10[Formula: see text] ions/cm2 and the effects of irradiation on structural, magnetic and electrical characteristics of thin films were investigated. Rutherford backscattering spectroscopy (RBS) confirmed the presence of Al, N and Ho in prepared samples. X-ray diffraction analysis showed that crystallinity of the thin films was enhanced after irradiation and thicker films were more crystalline. Atomic force microscopy (AFM) revealed that the surface roughness and porosity of the thin films were increased after irradiation. Magnetic measurements showed that diamagnetic AlN:Ho thin films can be transformed into paramagnetic and ferromagnetic ones via suitable irradiation. The increase in carrier concentrations after irradiation was responsible for tuning the electrical and magnetic characteristics of thin films for applications in various high voltage microelectronic and magnetic devices.


2005 ◽  
Vol 474 (1-2) ◽  
pp. 127-132 ◽  
Author(s):  
Ju-O Park ◽  
Joon-Hyung Lee ◽  
Jeong-Joo Kim ◽  
Sang-Hee Cho ◽  
Young Ki Cho

2012 ◽  
Vol 502 ◽  
pp. 77-81
Author(s):  
Z.Y. Zhong ◽  
J.H. Gu ◽  
X. He ◽  
C.Y. Yang ◽  
J. Hou

Indium tin oxide (ITO) thin films were deposited by RF magnetron sputtering on glass substrates employing a sintered ceramic target. The influence of substrate temperature on the structural, compositional, optical and electrical properties of the thin films were investigated by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), spectrophotometer and four-point probes. All the ITO thin films show a polycrystalline indium oxide structure and have a preferred orientation along the (222) direction. The substrate temperature significantly affects the crystal structure and optoelectrical properties of the thin films. With the increment of substrate temperature, the electrical resistivity of the deposited films decreases, the crystallite dimension, optical bandgap and average transmittance in the visible region increase. The ITO thin film deposited at substrate temperature of 200 °C possesses the best synthetic optoelectrical properties, with the highest transmittance, the lowest resistivity and the highest figure of merit.


2014 ◽  
Vol 895 ◽  
pp. 181-185 ◽  
Author(s):  
M. Sobri ◽  
A. Shuhaimi ◽  
M. Mazwan ◽  
K.M. Hakim ◽  
S. Najwa ◽  
...  

Nickel (Ni)/ indium tin oxide (ITO) thin-films have been deposited on silicon (Si) and glass substrates using radio-frequency (RF) magnetron sputtering at 200°C temperature. ITO layer was deposited on top of Ni layer with various deposition parameter. The material and optical properties of the ITO samples with and without Ni seed layer were analyzed. X-ray diffraction studies shows that the films are crystalline with the typical ITO diffraction peaks of (222), (400) and (411). The FESEM and AFM images shows that the grains have uniform shapes and sizes. FESEM results reveal that the grain size along the sample surface decreases when the Ni seed layer is added. Both the samples shows higher transmittance of more than 95% in UV-vis spectrometer.


Sign in / Sign up

Export Citation Format

Share Document