Effects of the Addition of Rhenium on the Thermoelectric Properties of the AlPdMn Quasicrystalline System

2000 ◽  
Vol 626 ◽  
Author(s):  
A. L. Pope ◽  
R. Gagnon ◽  
R. Schneidmiller ◽  
P. N. Alboni ◽  
R. T. Littleton ◽  
...  

ABSTRACTPartially due to their lack of periodic structure, quasicrystals have inherently low thermal conductivity on the order of 1 - 3 W/m-K. AlPdMn quasicrystals exhibit favorable room temperature values of electrical conductivity, 500–800 (Ω-cm)-1, and thermopower, 80 μV/K, with respect to thermoelectric applications. In an effort to further increase the thermopower and hopefully minimize the thermal conductivity via phonon scattering, quartenary Al71Pd21Mn8-XReX quasicrystals were grown. X-ray data confirms that the addition of a fourth element does not alter the quasiperiodicity of the sample. Al71Pd21Mn8-XReX quasicrystals of varying Re concentration were synthesized where x had values of 0, 0.08, 0.25, 0.4, 0.8, 2, 5, 6, and 8. Both thermal and electrical transport property measurements have been performed and are reported.

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3854 ◽  
Author(s):  
Jun-Young Cho ◽  
Muhammad Siyar ◽  
Woo Chan Jin ◽  
Euyheon Hwang ◽  
Seung-Hwan Bae ◽  
...  

SnSe is considered as a promising thermoelectric (TE) material since the discovery of the record figure of merit (ZT) of 2.6 at 926 K in single crystal SnSe. It is, however, difficult to use single crystal SnSe for practical applications due to the poor mechanical properties and the difficulty and cost of fabricating a single crystal. It is highly desirable to improve the properties of polycrystalline SnSe whose TE properties are still not near to that of single crystal SnSe. In this study, in order to control the TE properties of polycrystalline SnSe, polycrystalline SnSe–SnTe solid solutions were fabricated, and the effect of the solid solution on the electrical transport and TE properties was investigated. The SnSe1−xTex samples were fabricated using mechanical alloying and spark plasma sintering. X-ray diffraction (XRD) analyses revealed that the solubility limit of Te in SnSe1−xTex is somewhere between x = 0.3 and 0.5. With increasing Te content, the electrical conductivity was increased due to the increase of carrier concentration, while the lattice thermal conductivity was suppressed by the increased amount of phonon scattering. The change of carrier concentration and electrical conductivity is explained using the measured band gap energy and the calculated band structure. The change of thermal conductivity is explained using the change of lattice thermal conductivity from the increased amount of phonon scattering at the point defect sites. A ZT of ~0.78 was obtained at 823 K from SnSe0.7Te0.3, which is an ~11% improvement compared to that of SnSe.


2020 ◽  
Vol 34 (18) ◽  
pp. 2050206
Author(s):  
Ying Zhou ◽  
Zhenhua Ge ◽  
Jun Guo ◽  
Jing Feng

[Formula: see text] is a [Formula: see text] compound (where Pn = Bi and Sb, Ch = Te, Se, and S), which has attracted increasing attention as a candidate for use in thermoelectric applications. Previous studies demonstrated the advantage of [Formula: see text] thermoelectric materials, despite an inferior thermoelectric performance. Herein, a series of [Formula: see text] ([Formula: see text], 0.10, 0.15, 0.20, and 0.25) thermoelectric materials were prepared by powder compaction sintering. The effects of phase structures and microstructure of the [Formula: see text] bulk material were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The thermoelectric properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, were measured systematically. The results show that carrier concentration increased with decreasing Se content, which in turn affected the electrical transport properties. Low Se contents gave larger power factor (PF) values than the pristine [Formula: see text] sample, the maximum PF value being [Formula: see text] at 320 K for [Formula: see text]. The variation in PF was attributed to the variations in electrical conductivity [Formula: see text] and Seebeck coefficient [Formula: see text] upon optimizing Se content. The [Formula: see text] samples showed an enhanced thermoelectric figure of merit (ZT) with increasing measurement temperature, due to the increased [Formula: see text] value, [Formula: see text], and decreased [Formula: see text]. The [Formula: see text] sample exhibited the highest ZT (0.28) at 575 K, while [Formula: see text] exhibited the lowest ZT (0.14) at 325 K. This indicated that tuning Se content was an effective way to enhance carrier concentration.


2011 ◽  
Vol 695 ◽  
pp. 65-68 ◽  
Author(s):  
Kwan Ho Park ◽  
Il Ho Kim

Co4-xFexSb12-ySny skutterudites were synthesized by mechanical alloying and hot pressing, and thermoelectric properties were examined. The carrier concentration increased by doping and thereby the electrical conductivity increased compared with intrinsic CoSb3. Every specimen had a positive Seebeck coefficient. Fe doping caused a decrease in the Seebeck coefficient but it could be enhanced by Fe/Sn double doping possibly due to charge compensation. The thermal conductivity was desirably very low and this originated from ionized impurity-phonon scattering. Thermoelectric properties were improved remarkably by Fe/Sn doping, and a maximum figure of merit, ZT = 0.5 was obtained at 723 K in the Co3FeSb11.2Sn0.8 specimen.


2014 ◽  
Vol 07 (03) ◽  
pp. 1450032 ◽  
Author(s):  
Degang Zhao ◽  
Min Zuo ◽  
Zhenqing Wang ◽  
Xinying Teng ◽  
Haoran Geng

The Ta -doped ZrNiSn half-Heusler alloys, Zr 1-x Ta x NiSn , were synthesized by arc melting and hot-press sintering. Microstructure of Zr 1-x Ta x NiSn compounds were analyzed and the thermoelectric (TE) properties of Zr 1-x Ta x NiSn compounds were measured from room temperature to 823 K. The electrical conductivity increased with increasing Ta content. The Seebeck coefficient of Zr 1-x Ta x NiSn compounds was sharply decreased with increasing Ta content. The Hall mobility was proportional to T-1.5 above 673 K, indicating that the acoustic phonon scattering was predominant in the temperature range. The thermal conductivity was effectively depressed by introducing Ta substitution. The figure of merit of ZrNiSn compounds was improved due to the decreased thermal conductivity and increased electrical conductivity. The maximum ZT value of 0.60 was achieved for Zr 0.97 Ta 0.03 NiSn sample at 823 K.


2000 ◽  
Vol 626 ◽  
Author(s):  
M. Fornari ◽  
D. J. Singh ◽  
I. I. Mazin ◽  
J. L. Feldman

ABSTRACTThe key challenges in discovering new high ZT thermoelectrics are understanding how the nearly contradictory requirements of high electrical conductivity, high thermopower and low thermal conductivity can be achieved in a single material and based on this identifying suitable compounds. First principles calculations provide a material specific microscopic window into the relevant properties and their origins. We illustrate the utility of the approach by presenting specific examples of compounds belonging to the class of skutterudites that are or are not good thermoelectrics along with the microscopic reasons. Based on our computational exploration we make a suggestion for achieving higher values of ZT at room temperature in bulk materials, namely n-type La(Ru,Rh)4Sb12 with high La-filling.


2021 ◽  
Author(s):  
◽  
Michael Ng

<p>Energy consumption worldwide is constantly increasing, bringing with it the demand for low cost, environmentally friendly and efficient energy technologies. One of these promising technologies is thermoelectrics in which electric power is harvested from waste heat energy. The efficiency of a thermoelectric device is determined by the dimensionless figure of merit ZT = σS²T/k where σ is the electrical conductivity, S is the thermopower, k is the thermal conductivity, and T is the average temperature. In this thesis we investigate the use of nanostructuring, which has been known to lead to significant reduction in the lattice thermal conductivity to maximise the figure of merit.  One of the most successful bulk thermoelectric materials is Bi₂Te₃, with a ZT of unity at room temperature. Here we investigate the effects of nanostructuring on the thermoelectric properties of Bi₂Te₃. Sub-100 nm ₂Te₃ nanoparticles were successfully synthesized and the figure of merit was found to be ZT ~ 5X10⁻⁵ at room temperature. The effect of a ligand exchange treatment to replace the long chain organic ligand on the as-synthesized nanoparticles with a short chain alkyl ligand was explored. After ligand exchange treatment with hydrazine the figure of merit of sub-100 nm Bi₂Te₃ was found to increase by two fold to ZT ~ 1X10⁻⁴ at room temperature. Overall the figure of merit is low compared to other nanostructured Bi₂Te₃, this was attributed to the extremely low electrical conductivity. The thermopower and thermal conductivity were found to be ~96 μVK⁻¹ and ~0.38 Wm⁻¹ K⁻¹ at 300 K respectively, which show improvements over other nanostructured Bi₂Te₃.  Further optimisation of the figure of merit was also investigated by incorporating Cu, Ni and Co dopants. The most successful of these attempts was Co in which 14.5% Co relative to Bi was successfully incorporated into sub-100 nm Bi₂Te₃. The figure of merit of nanostructured Bi₁.₇₁Co₀.₂₉Te₁.₇₁ alloy was found to increase by 40% to a ZT ~ 1.4X10⁻⁴ at room temperature. Although overall the figure of merit is low, the effect of Co alloying and hydrazine treatment shows potential as a route to optimise the figure of merit.  A potential novel material for thermoelectrics applications is inorganicorganic perovskite single crystals. Here we report a synthetic strategy to successfully grow large millimetre scale single crystals of MAPbBr₃₋xClx, FAPbBr₃₋xClx, and MAPb₁-xSnxBr₃ (MA = methylammonium and FA = formamidinium) using inverse temperature crystallisation (ITC) in a matter of days. This is the first reported case of mixed Br/Cl single crystals with a FA cation and mixed Pb/Sn based perovskites grown using ITC. The bandgap of these single crystals was successfully tuned by altering the halide and metal site composition. It was found that single crystals of FAPbBr₃₋xClx were prone to surface degradation with increased synthesis time. This surface degradation was observed to be reversible by placing the single crystals in an antisolvent such as chloroform.  A tentative model was proposed to analyse the IV characteristics of the single crystal perovskites in order to extract mobilities and diffusion lengths. The MAPbBr₃ and MAPbBr₂.₅Cl₀.₅ single crystal mobilities were found to be between 30-390 cm² V⁻¹ s⁻¹ and 10-100 cm² V⁻¹ s⁻¹ respectively, the diffusion lengths were found to be between 2-8 μm and 1-4 μm respectively. This is an improvement over polycrystalline thin film perovskites and comparable to other single crystal perovskites. The conductance of MAPb₁-xSnxBr₃ based perovskites was found to increase by 2 orders of magnitude even with just 1% of Sn incorporated. The thermal conductivity of MAPbBr₃ single crystals was found to be ~1.12 Wm⁻¹ K⁻¹ at room temperature which is reasonable low for single crystals, however no other thermoelectric properties could be measured due to the self cleaving nature of the single crystals with decreasing temperature and the high resistivity of the material.</p>


2015 ◽  
Vol 44 (5) ◽  
pp. 2285-2293 ◽  
Author(s):  
Jing Li ◽  
Li-Dong Zhao ◽  
Jiehe Sui ◽  
David Berardan ◽  
Wei Cai ◽  
...  

The thermoelectric properties of Na doped BaCu2Se2 were studied. The electrical conductivity of BaCu2Se2 was increased by 2 orders of magnitude through Na doping at the Ba sites, combined with a surprisingly low thermal conductivity; a ZT of 1.0 has been obtained for Ba0.925Na0.075Cu2Se2 at 773 K.


Author(s):  
Woochul Kim ◽  
Pramod Reddy ◽  
Arun Majumdar ◽  
Joshua Zide ◽  
Arthur Gossard ◽  
...  

Low thermal conductivity is essential for efficient operation of thermoelectric/thermionic power generation devices. There have been several attempts to design materials with low thermal conductivity without sacrificing electrical transport. These approaches utilized different mechanisms of phonon scattering, such as acoustic impedance mismatch of the adjacent layers in superlattices or defect scattering of phonons etc [1, 2]. However, each of these approaches scatter phonons only in a particular region of the phonon spectrum. In this paper we present experimental results of the thermal conductivity of epitaxially grown superlattices engineered to take advantage of the various scattering mechanisms to scatter phonons over the entire phonon spectrum.


2005 ◽  
Vol 886 ◽  
Author(s):  
Pierre Ferdinand Poudeu Poudeu ◽  
Jonathan D'Angelo ◽  
Adam Downey ◽  
Robert Pcionek ◽  
Joseph Sootsman ◽  
...  

ABSTRACTThe thermoelectric properties of Pb9.6SbyTe10−xSexwere investigated in the intermediate temperature range of 300 – 700 K. The effect of the variation of Sb content (y) on the electronic properties of the materials is remarkable. Samples with compositions Pb9.6Sb0.2Te10−xSex(y = 0.2) show the best combination of low thermal conductivity with moderate electrical conductivity and thermopower. For Pb9.6Sb0.2Te8Se2(x = 2) a maximum figure of merit of ZT ∼ 1.1 was obtained around 700 K. This value is nearly 1.4 times higher than that of PbTe at 700 K. This enhancement of the figure of merit of Pb9.6Sb0.2Te8Se2derives from its extremely low thermal conductivity (∼0.7 at W/m.K at 700 K). High resolution transmission electron microscopy of Pb9.6Sb0.2Te10−xSexsamples shows broadly distributed Sb-rich nanocrystals, which may be the key feature responsible for the suppression of the thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document