scholarly journals 4-Point Resistance Measurements of Individual Bi Nanowires

2001 ◽  
Vol 635 ◽  
Author(s):  
Stephen B. Cronin ◽  
Yu-Ming Lin ◽  
Pratibha L. Gai ◽  
Oded Rabin ◽  
Marcie R. Black ◽  
...  

AbstractWe have synthesized single crystal bismuth nanowires by pressure injecting molten Bi into anodic alumina templates. By varying the template fabrication conditions, nanowires with diameters ranging from 10 to 200nm and lengths of ~50[.proportional]m can be produced. We present a scheme for measuring the resistance of a single Bi nanowire using a 4-point measurement technique. The nanowires are found to have a 7nm thick oxide layer which causes very high contact resistance when electrodes are patterned on top of the nanowires. The oxide is found to be resilient to acid etching, but can be successfully reduced in high temperature hydrogen and ammonia environments. The reformation time of the oxide in air is found to be less than 1 minute. Focused ion beam milling is attempted as an alternate solution to oxide removal.

2001 ◽  
Vol 679 ◽  
Author(s):  
Stephen B. Cronin ◽  
Yu-Ming Lin ◽  
Oded Rabin ◽  
Marcie R. Black ◽  
Gene Dresselhaus ◽  
...  

ABSTRACTThe pressure filling of anodic alumina templates with molten bismuth has been used to synthesize single crystalline bismuth nanowires with diameters ranging from 7 to 200nm and lengths of 50μm. The nanowires are separated by dissolving the template, and electrodes are affixed to single Bi nanowires on Si substrates. A focused ion beam (FIB) technique is used first to sputter off the oxide from the nanowires with a Ga ion beam and then to deposit Pt without breaking vacuum. The resistivity of a 200nm diameter Bi nanowire is found to be only slightly greater than the bulk value, while preliminary measurements indicate that the resistivity of a 100nm diameter nanowire is significantly larger than bulk. The temperature dependence of the resistivity of a 100nm nanowire is modeled by considering the temperature dependent band parameters and the quantized band structure of the nanowires. This theoretical model is consistent with the experimental results.


2001 ◽  
Vol 691 ◽  
Author(s):  
Stephen B. Cronin ◽  
Yu-Ming Lin ◽  
Oded Rabin ◽  
Marcie R. Black ◽  
Gene Dresselhaus ◽  
...  

ABSTRACTWe developed a method for making 4-point contacts to Bi nanowires with a thick oxide coat using a combination of lithographic and focused ion beam (FIB) techniques. The resistivity of Bi nanowires with diameters in the range 70-200nm is found to increase with decreasing wire diameter. In contrast to bulk Bi, the temperature dependence of the resistivity is found to decrease monotonically with increasing temperature. The results are explained on the basis of increased scattering in the nanowire and the known temperature dependence of the electronic properties of bulk Bi. A large magneto-resistance was also measured, indicating a high crystalline quality of the nanowires. A large spread in the measured values of the resistivity indicates significant systematic error in the measurement technique. Possible sources for error are discussed.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
David C. Cox ◽  
John C. Gallop ◽  
Ling Hao

AbstractFocused ion beam (FIB) has found a steady and growing use as a tool for fabrication, particularly in the length-scale of micrometres down to nanometres. Traditionally more commonly used for materials characterisation, FIB is continually finding new research areas in a growing number of laboratories. For example, over the last ten years the number of FIB instruments in the U.K. alone has gone from single figures, largely supplied by a single manufacturer, to many tens of instruments supplied by several competing manufacturers. Although the smaller of the two research areas, FIB fabrication has found itself to be incredibly powerful in the modification and fabrication of devices for all kinds of experimentation. Here we report our use of FIB in the production of Superconducting QUantum Interference Devices (SQUIDs) and other closely related devices for metrological applications. This is an area ideally suited to FIB fabrication as the required precision is very high, the number of required devices is relatively low, but the flexibility of using FIB means that a large range of smallbatch, and often unique, devices can be constructed quickly and with very short lead times.


Author(s):  
J. Gierak ◽  
E. Cambril ◽  
M. Schneider ◽  
C. David ◽  
D. Mailly ◽  
...  

1988 ◽  
Vol 131 ◽  
Author(s):  
L. R. Harriott ◽  
M. J. Vasile

ABSTRACTA process for repair of micron and submicron sized transparent defects on photomasks is described. Opaque films are deposited at the intersection of the flux of organic monomers from a gas jet and a 20 keV Ga ion beam. Focused ion beam-induced deposition differs from other ion-induced, electron beam and laser processes due to the very high ion current density and the sputtering of the material as it is being deposited. We have explored the deposition-sputtering rate competition for several precursor materials as a function of monomer flux and ion beam dose rate. Our results suggest a model for deposition which requires polymerization of the precursor through carbon-carbon double bonds to favor deposition over sputtering by creating high molecular weight material at the target.


2008 ◽  
Vol 1089 ◽  
Author(s):  
Jacques Gierak ◽  
Eric Bourhis ◽  
Dominique Mailly ◽  
Gilles Patriarche ◽  
Ali Madouri ◽  
...  

AbstractDecisive advances in the fields of nanosciences and nanotechnologies are intimately related to the development of new instruments and of related writing schemes and methodologies. Therefore we have recently proposed exploitation of the nano-structuring potential of a highly Focused Ion Beam as a tool, to overcome intrinsic limitations of current nano-fabrication techniques and to allow innovative patterning schemes urgently needed in many nanoscience challenges. In this work, we will first detail a very high resolution FIB instrument we have developed specifically to meet these nano-fabrication requirements. Then we will introduce and illustrate some advanced FIB processing schemes. These patterning schemes are (i) Ultra thin membranes as an ideal template for FIB nanoprocessing. (ii) Local defect injection for magnetic thin film direct patterning. (iii) Functionalization of graphite substrates to prepare 2D-organized arrays of clusters. (iv) FIB engineering of the optical properties of microcavities.


2013 ◽  
Vol 20 (3) ◽  
pp. 433-440 ◽  
Author(s):  
Marcel Mayer ◽  
Kahraman Keskinbora ◽  
Corinne Grévent ◽  
Adriana Szeghalmi ◽  
Mato Knez ◽  
...  

Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD.Viathe use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricatedviathis combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5315
Author(s):  
Carsten Wickmann ◽  
Christopher Benz ◽  
Horst Heyer ◽  
Kerstin Witte-Bodnar ◽  
Jan Schäfer ◽  
...  

The aim of the present work was to investigate the ‘fine granular area’ (FGA) formation based on artificially generated internal defects in additively manufactured Ti6Al4V specimens in the early stage of fatigue crack growth in the ‘very high cycle fatigue’ (VHCF) regime. Fatigue tests were performed with constant amplitude at pure tension-compression loading (R = −1) using an ultrasonic fatigue testing setup. Failed specimens were investigated using optical microscopy, high-resolution ‘scanning electron microscopy’ (SEM), and ‘focused ion beam’ (FIB) techniques. Further, the paper introduces alternative proposals to identify the FGA layer beneath the fracture surfaces in terms of the ‘cross section polishing’ (CSP) technique and metallic grindings with special attention paid to the crack origin, the surrounding microstructure, and the expansion of the nanograin layer beneath the fracture surface. Different existing fracture mechanical approaches were applied to evaluate if an FGA formation is possible. Moreover, the results were discussed in comparison to the experimental findings.


Sign in / Sign up

Export Citation Format

Share Document