Microcrystalline Germanium Photodetectors
ABSTRACTFor sensor applications in the detection of near infrared light we have prepared μc-Ge:H by plasma enhanced chemical vapor deposition (PECVD) with a mixture of germane and hydrogen, investigatedits structural and electronic properties and incorporated it into thin pin diodes. In order to ensure microcrystalline growth we had to use high hydrogen dilution. However, only the material prepared with a ratio of germane to hydrogen of 0.2% shows high crystallinity. The optical absorption is remarkably different from c-Ge and exhibits no indication of a direct gap at 0.8eV. When this material is implemented as part of a 110nm thin absorber, a short circuit current of 20mA/cm2 and a quantum efficiency of 15% at a wavelength of 1.1μm are achieved. Higher germane concentrations in hydrogen lead to poor electronic properties due to an increase of the amorphous phase and the short circuit current of the devices deteriorates. As for crystalline germanium photodiodes cooling of the devices is used to overcome the restrictionoriginating from the high free carrier concentration.