Lattice parameter dependence versus composition in semiconductor alloys: the InGaAs case

2001 ◽  
Vol 677 ◽  
Author(s):  
C. Ferrari ◽  
E. Villaggi ◽  
N. Armani ◽  
G. Carta ◽  
G. Rossetto

ABSTRACTFollowing recent works that report a non linear dependence of the lattice parameter versus composition in some semiconductor alloys the InGaAs/InP system has been investigated. The lattice parameter and the composition of InGaAs/InP lattice matched heterostructures have been independently determined by measuring the high resolution X-ray diffraction profile and the absorption of the X-ray beam diffracted from the InP substrate. In contrast with previous results that stated a linear dependence of the lattice parameter with composition, a 6% larger In content in the InGaAs/InP lattice matched alloy is found. Such result has been confirmed by the analysis of the X-ray fluorescence induced by an electron beam on the layer and on standards made of InAs and GaAs fine ground crystals. The result is in good agreement with the predictions of models based on the elasticity theory applied on a microscopic scale.

1991 ◽  
Vol 241 ◽  
Author(s):  
M. Fatemi ◽  
B. Tadayon ◽  
H. B. Dietrich ◽  
S. Tadayon

ABSTRACTLow-temperature GaAs layers (LTGaAs) grown by molecular beam epitaxy on GaAs substrates have been characterized by x-ray diffraction techniques. X-ray rocking curve measurements on more than 200 anneal conditions show that through appropriate choice of growth condition, layers with different states of strain are obtained. Three distinct ranges of low temperature growth are defined, labelled as “low-range,” “mid-range,” and “high-range,” corresponding to growth temperatures less than 260 °C, between 260 and 450 °C, and more than 450 °C, respectively. 0.5μm thick films grown in the low-range are amorphous, whereas those in the mid-range are fully strained and lattice-matched to the substrate, and those grown above 450 °C are indistinguishable from ordinary GaAs. Notable properties of mid-range layers are the random behavior of the as-grown strain, and the expansion and contraction of the lattice parameter with thermal anneals up to 900 °C. A growth model for LTGaAs based on arsenic antisite defects is proposed.


1992 ◽  
Vol 260 ◽  
Author(s):  
A. Alec Talin ◽  
Tue Ngo ◽  
R. Stanley Williams

ABSTRACTX-ray diffraction studies and current-voltage measurements have been performed on a (100) oriented single crystal thin film of CoxGa1-x (x = 0.42) grown epitaxially on n-GaAs, from 300°C to 900°C. At this composition, CoxGa1-x, which has a broad range of homogeneity and a variable lattice parameter, is lattice matched to GaAs better than 0.5%. A Schottky barrier height of 0.68eV and an ideality factor of 1.07 have been measured up to 500°C, with significant barrier degradation at 600°C. At 700°C formation of the CoGa3 phase and a shift in CoxGa1-x stoichiometry to its bulk thermodynamically most stable composition of Co.45Ga.55 was observed with x-ray diffraction. At 800°C Co2AS formed, and at 900°C only CoGa3 and Co2As phases remained in contact with GaAs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Durga Sankar Vavilapalli ◽  
Ambrose A. Melvin ◽  
F. Bellarmine ◽  
Ramanjaneyulu Mannam ◽  
Srihari Velaga ◽  
...  

AbstractIdeal sillenite type Bi12FeO20 (BFO) micron sized single crystals have been successfully grown via inexpensive hydrothermal method. The refined single crystal X-ray diffraction data reveals cubic Bi12FeO20 structure with single crystal parameters. Occurrence of rare Fe4+ state is identified via X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The lattice parameter (a) and corresponding molar volume (Vm) of Bi12FeO20 have been measured in the temperature range of 30–700 °C by the X-ray diffraction method. The thermal expansion coefficient (α) 3.93 × 10–5 K−1 was calculated from the measured values of the parameters. Electronic structure and density of states are investigated by first principle calculations. Photoelectrochemical measurements on single crystals with bandgap of 2 eV reveal significant photo response. The photoactivity of as grown crystals were further investigated by degrading organic effluents such as Methylene blue (MB) and Congo red (CR) under natural sunlight. BFO showed photodegradation efficiency about 74.23% and 32.10% for degrading MB and CR respectively. Interesting morphology and microstructure of pointed spearhead like BFO crystals provide a new insight in designing and synthesizing multifunctional single crystals.


Carbon Trends ◽  
2021 ◽  
pp. 100071
Author(s):  
Keith R. Hallam ◽  
James Edward Darnbrough ◽  
Charilaos Paraskevoulakos ◽  
Peter J. Heard ◽  
T. James Marrow ◽  
...  

1979 ◽  
Vol 23 ◽  
pp. 333-339
Author(s):  
S. K. Gupta ◽  
B. D. Cullity

Since the measurement of residual stress by X-ray diffraction techniques is dependent on the difference in angle of a diffraction peak maximum when the sample is examined consecutively with its surface at two different angles to the diffracting planes, it is important that these diffraction angles be obtained precisely, preferably with an accuracy of ± 0.01 deg. 2θ. Similar accuracy is desired in precise lattice parameter determination. In such measurements, it is imperative that the diffractometer be well-aligned. It is in the context of diffractometer alignment with the aid of a silicon powder standard free of residual stress that the diffraction peak analysis techniques described here have been developed, preparatory to residual stress determinations.


2000 ◽  
Vol 5 (S1) ◽  
pp. 412-424
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


2008 ◽  
Vol 39 (8) ◽  
pp. 1978-1984 ◽  
Author(s):  
S. Mahadevan ◽  
T. Jayakumar ◽  
B.P.C. Rao ◽  
Anish Kumar ◽  
K.V. Rajkumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document