Dislocation Boundaries and Slip Systems in Uniaxially Deformed Crystals

2001 ◽  
Vol 683 ◽  
Author(s):  
Grethe Winther ◽  
Xiaoxu Huang ◽  
Søren Fæster Nielsen ◽  
John Wert

ABSTRACTThe dislocations in the extended planar dislocation boundaries formed during deformation are generated by the active slip systems. Investigation of the boundaries is therefore a tool to obtain information on the active slip systems. Here, the orientation of the dislocation boundaries in uniaxially deformed aluminum poly- and single crystals are compared. It is found that the single crystal boundary planes are consistent with those found in polycrystals, indicating that the active slip systems in single and polycrystals are the same. However, boundaries are closer to the slip planes in the single crystals. This is taken as an indication that the secondary slip systems are more active in the polycrystal. The orientation of the boundary plane varies with the crystal orientation in a way that is consistent with activation of the five most stressed slip systems.

2003 ◽  
Vol 779 ◽  
Author(s):  
Biqiang Xu ◽  
Yanyao Jiang

AbstractA constitutive model was developed to bridge the cyclic plasticity behavior of single crystals and the corresponding characteristic dislocation structures. Yield and flow were built on the individual slip systems. The Armstrong-Frederick kinematic hardening rule was invoked to capture the Bauschinger effect. A material memory parameter was introduced to consider the amplitude dependence of cyclic hardening. Latent hardening considering the interactions among the slip systems was used to describe the anisotropic cyclic behavior. The experimental results of copper single crystals were used to validate the model developed. It was found that the model was able to adequately describe the well-known three distinctive regions in the cyclic stress-strain curve of the FCC single crystal oriented for single slip and the associated dislocation substructures. The model was capable of capturing the enhanced hardening observed in copper single crystals in multi-slip orientations. For a given loading history, the model can predict not only the saturated stress-strain response but also the detailed evolution of the transient cyclic behavior. The characteristic dislocation structures can be featured with the slip evolution.


1955 ◽  
Vol 33 (12) ◽  
pp. 1756-1767
Author(s):  
K. Ekler ◽  
C. A. Winkler

The polarization–time relations for the initial (Pi), maximum (Pmax), and pseudo-steady-state (Ps) polarizations on copper single crystals in the absence and presence of gelatin and gelatin plus chloride ion were found to depend upon crystal orientation. The Pi and Pmax in the absence of gelatin, the Pi in its presence, and the static potentials were all similarly related to the reticular density. The Pi increased, and the time to maximum polarization (tmax) decreased, with increase of current density; the relations between these quantities showed marked differences for the different crystals. The variation with reticular density of Pi and Pmax in the absence of addition agents and of Pi in its presence probably represents differences in activation overpotential at the various crystal faces. The adsorption of gelatin on different crystal faces was also found to be markedly different. Polarization in the presence of gelatin was decreased by small amounts of chloride ion; a linear relation for all the crystals used was obtained by plotting the increase in polarization caused by gelatin against the decrease caused by 2 mgm./liter chloride ion in the presence of gelatin. In the absence of addition agent, change of acid concentration from 50 to 200 gm./liter had no effect on Pi and addition of chloride ion had no effect on Ps at single crystal cathodes.


Author(s):  
Shadab Siddiqui ◽  
Nagaraj K. Arakere ◽  
Fereshteh Ebrahimi

A comprehensive numerical investigation of plasticity (slip) evolution near notches was conducted at 28°C and 927°C, for two crystallographic orientations of double-notched single crystal nickel base superalloys (SCNBS) specimens. The two specimens have a common loading orientation of <001> and have notches parallel to the <010> (specimen I) and <110> (specimen II) orientation, respectively. A three dimensional anisotropic linear elastic finite element model was employed to calculate the stress field near the notch of these samples. Resolved shear stress values were obtained near the notch for the primary octahedral slip systems ({111} <110>) and cube slip systems ({100} <110>). The effect of temperature was incorporated in the model as changes in the elastic modulus values and the critical resolved shear stress (CRSS). The results suggest that the number of dominant slip systems (slip systems with the highest resolved shear stress) and the size and the shape of the plastic zones around the notch are both functions of the orientation as well as the test temperature. A comparison between the absolute values of resolved shear stresses near the notch at 28°C and 927°C on the {111} slip planes revealed that the plastic zone size and the number of activated dominant slip systems are not significantly affected by the temperature dependency of the elastic properties of the SCNBS, but rather by the change in critical resolved shear stress of this material with temperature. The load required to initiate slip was found to be lower in specimen II than in specimen I at both temperatures. Furthermore, at 927°C the maximum resolved shear stress (RSS) on the notch surface was found to be greater on the {100} slip planes as compared with the {111} slip planes in both specimens. The results from this study will be helpful in understanding the slip evolution in SCNBS at high temperatures.


2005 ◽  
Vol 488-489 ◽  
pp. 193-196 ◽  
Author(s):  
Hiromi Miura ◽  
Taku Sakai ◽  
H. Nogawa ◽  
Xu Yue Yang ◽  
Yoshimi Watanabe ◽  
...  

Orientation-controlled Mg single crystals were tensile tested at temperatures between 473 K and 673 K at a strain rate of 4.2 x 10-4 s-1 in vacuum. Though all the single crystals showed high ductility compared with that of polycrystals, the ductility of the single crystals strongly depended on the crystal orientation. The [27 -1 -26 1] single crystal showed 0.57 fracture strain, while the [3 8 -11 -1] single crystal showed superplastic behavior of ductility over 1.8 strain. The observed strong orientation dependence of ductility seemed to be caused by orientation dependence of ease occurrence of dynamic recrystallization (DRX) in the single crystals during high-temperature deformation. The orientation dependence of ductility of Mg single crystals will be discussed in detail concerning crystallographical orientations of the single crystals, occurrence of DRX and fracture.


2014 ◽  
Vol 783-786 ◽  
pp. 341-345 ◽  
Author(s):  
Shinji Ando ◽  
Atsushi Kodera ◽  
Kazuki Fukushima ◽  
Masayuki Tsushida ◽  
Hiromoto Kitahara

According to von-Mises criterion, five kinds of independent slip systems are required for uniform deformation, so it is necessary to activate non-basal slip systems to show good ductility. However, it has not become clear the effect of Zn or Al for non-basal slip systems yet. To investigate deformation behavior of magnesium crystal by non-basal slip and alloying effect for the non-basal slip, pure magnesium and Mg-Al-Zn single crystals were stretched in the [110] direction. While {112}<23> second order pyramidal slip was activated at room temperature in pure magnesium, {101}<23> first order pyramidal slip became active slip at higher temperature. In Mg-Al-Zn alloy single crystal, {101} twin also activated by adding aluminum. These results indicate that active non-basal slip systems and twin in magnesium strongly depend on deformation temperature and alloying elements.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2466-2471 ◽  
Author(s):  
LIN XIAO ◽  
QIAN YU ◽  
QIAOYAN SUN ◽  
JUN SUN

Free-standing sub-micron Ti -5 Al single crystal square pillars were fabricated along [Formula: see text] double slip and [0001] twinning orientations using FIB fabrication processes. Samples in range of 0.4 to 2.0µm were compressed. The yield stress increases much higher than their bulk counterpart as the specimen width decreases. The tendency of "smaller is stronger" is displayed in Ti -5 Al single crystals loaded along [Formula: see text] and [0001] orientations. The number of slip systems is restricted by specimen physical size as it declines from 2µm to 0.5µm, when the specimens were subjected to double slip loading. Meanwhile, when sample size is less than 1.0µm, micro-pillars along twinning orientation have to compensate the incomplete twinning deformation via shearing due to geometrical restriction and dislocation starvation effects. This variation of deformation mode could be attributed to the starvation effect of dislocations.


1990 ◽  
Vol 213 ◽  
Author(s):  
R.D. Field ◽  
D.F. Lahrman ◽  
R. Darolia

ABSTRACTA detailed study of deformation of NiAl single crystals in two soft orientations, <110> and <111>, has been conducted. The Schmid factor favors {100} slip in the former and {110} slip in the latter. Detailed dislocation analysis, critical resolved shear stress measurements, and slip trace analysis have been performed to determine the nature of dislocation motion and interactions in this material. Particular attention is given to prismatic loops formed during deformation, since the shapes of these loops reveal the active slip planes. Similar loop morphologies observed in elevated temperature [001] oriented tensile specimens are also discussed.


2019 ◽  
Vol 54 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Yu Zhai ◽  
Muhammad Kashif Khan ◽  
José Correia ◽  
Abílio MP de Jesus ◽  
Zhiyong Huang ◽  
...  

The effects of the secondary crystal orientations on the nickel-based single-crystal superalloy turbine blades were investigated. The stress concentration features were used for investigation of the optimal secondary crystal orientation leading to the higher strength of the single-crystal turbine blades. The crystal plastic finite element method coupled with micromechanics constitutive model is applied to study the effect of secondary crystal orientation on plastic deformation and mechanical behavior around the cooling holes and notches with the primary (load) orientation fixed at [001] direction. For nickel-based superalloy plates with holes or notches, the secondary crystal orientation effect on the strength needs to be clarified at various load levels. The maximum von Mises stress in the single-crystal alloy varies significantly with variation in the secondary crystal orientations. It was found that only two slip systems dominate the deformation process of the material owing to their favorable orientation with loading. The secondary orientation of 45° was identified with lowest resolved shear stress in the dominating slip systems and potential of producing higher strength for single-crystal turbine blades.


Sign in / Sign up

Export Citation Format

Share Document