UV-Optics for Excimer Laser based Crystallization Processes

2001 ◽  
Vol 685 ◽  
Author(s):  
H.-J. Kahlert ◽  
Frank Simon ◽  
Berthold Burghardt

AbstractLaser based crystallization of thin amorphous films on glass substrates have entered into industrial applications since several years. The excimer laser based process provides a low temperature procedure to obtain polycrystalline silicon films on flat panel display substrates to fabricate thin film transistors (TFT's).The key to this application is a uniform illumination of the. Line Beam systems provide up to 365mm long homogeneous exposure fields operated with up to 300 W average power 308nm excimer lasers. The paper covers a technical overview of Line Beam Optics layout, recent developments and results.Further high resolution optics are described and discussed for sequential lateral solidification (SLS) (1,2,3) processes. The SLS application has demonstrated to efficiently produce directionally solidified microstructures or even grain-boundary –free regions on Si-films. Diffraction limited resolution in the range of several micrometers and high optical throughput are important parameters to this application.General considerations are presented to describe technical limits which compromise laser beam related coherence effects, optimum uniform illumination, adequate resolution and depth of focus and optical efficiency for the practical application.

1997 ◽  
Vol 471 ◽  
Author(s):  
R. Pethe ◽  
C. Deshpandey ◽  
S. Dixit ◽  
E. Demaray ◽  
D. Meakin ◽  
...  

Large grain poly-Silicon (p-Si) films have been evaluated for high speed TFT for flat panel displays [1,2]. It is expected that with good quality p-Si, “System on Glass” products, in which entire electronic circuitry is incorporated directly onto glass are achievable [3]. This approach therefore has the potential to fabricate Integrated AMLCD's (IAMLCD) and bypass conventional Si wafer based products and integrate CMOS circuits with direct view TFT LCD manufacturing. To realize this potential; it is necessary to develop a production process for depositing repeatable, good quality p-Si films on to large area glass substrates.


1996 ◽  
Author(s):  
M. D. Efremov ◽  
V. V. Bolotov ◽  
Vladimir A. Volodin ◽  
E. A. Lipatnikov ◽  
L. I. Fedina ◽  
...  

2013 ◽  
Vol 750-752 ◽  
pp. 946-951
Author(s):  
Chun Yan Duan ◽  
Bin Ai ◽  
Rong Xue Li ◽  
Chao Liu ◽  
Jian Jun Lai ◽  
...  

Selected area laser-annealed polycrystalline silicon (p-Si) thin films were prepared by a 248 nm excimer laser. 1 μm thick p-Si films with grain size less than 100 nm were deposited on SiO2substrate by chemical vapor deposition using atmospheric pressure (APCVD). Grain sizes before and after annealing was examined by scanning electron microscopy (SEM) and the mechanism of grain growth was discussed in detail. The maximum grain size of a selected area laser-annealed p-Si film can be increased from 100 nm up to 2.9 μm on SiO2substrate by using appropriate laser energy densities. It indicated that silicon grains in laser-annealed regions had grown up competitively with three stages.


1992 ◽  
Vol 283 ◽  
Author(s):  
M. E. Savage ◽  
U. JaYamaha ◽  
A. Compaan ◽  
A. Aydinli ◽  
Dashen Shen

ABSTRACTExtremely heavily doped polycrystalline silicon films were prepared by multiple-pulse XeCl excimer laser annealing of hydrogenated amorphous silicon films. The as-grown films used here included five types: intrinsic, boron-doped, phosphorous-doped, and carbon alloyed with and without boron doping. Raman studies reveal that the annealed films prepared from the boron or phosphorous doped a-Si:H have high carrier activation and display the interference lineshape (Breit-Wigner-Fano) of the discrete phonons (Si-Si and Si-B modes) interacting with the continuum of the single particle electronic Raman scattering. The Raman lineshapes indicate concentrations of ∼1 × 1021 cm3. This is confirmed by dark conductivities exceeding 100 S/cm in the annealed boron-doped and phosphorous-doped layers.


2008 ◽  
Author(s):  
Norie Matsubara ◽  
Tomohiko Ogata ◽  
Takanori Mitani ◽  
Shinji Munetoh ◽  
Teruaki Motooka

2012 ◽  
Vol 1426 ◽  
pp. 331-337
Author(s):  
Hiroshi Noge ◽  
Akira Okada ◽  
Ta-Ko Chuang ◽  
J. Greg Couillard ◽  
Michio Kondo

ABSTRACTWe have succeeded in the rapid epitaxial growth of Si, Ge, and SiGe films on Si substrates below 670 ºC by reactive CVD utilizing the spontaneous exothermic reaction between SiH4, GeH4, and F2. Mono-crystalline SiGe epitaxial films with Ge composition ranging from 0.1 to 1.0 have been successfully grown by reactive CVD for the first time.This technique has also been successfully applied to the growth of these films on silicon-on-glass substrates by a 20 - 50 ºC increase of the heating temperature. Over 10 μm thick epitaxial films at 3 nm/s growth rate are obtained. The etch pit density of the 5.2 μm-thick Si0.5Ge0.5 film is as low as 5 x 106 cm-2 on top. Mobilities of the undoped SiGe and Si films are 180 to 550 cm2/Vs, confirming the good crystallinity of the epitaxial films.


1993 ◽  
Vol 8 (10) ◽  
pp. 2608-2612 ◽  
Author(s):  
C. Spinella ◽  
F. Benyaïch ◽  
A. Cacciato ◽  
E. Rimini ◽  
G. Fallico ◽  
...  

The early stages of the thermally induced epitaxial realignment of undoped and As-doped polycrystalline Si films deposited onto crystalline Si substrates were monitored by transmission electron microscopy. Under the effect of the heat treatment, the native oxide film at the poly-Si/c-Si interface begins to agglomerate into spherical beads. The grain boundary terminations at the interface are the preferred sites for the triggering of the realignment transformation which starts by the formation of epitaxial protuberances at these sites. This feature, in conjunction with the microstructure of the films during the first instants of the heat treatment, explains the occurrence of two different realignment modes. In undoped films the epitaxial protuberances, due to the fine grain structure, are closely distributed and grow together forming a rough interface moving toward the film's surface. For As-doped films, the larger grain size leaves a reduced density of realignment sites. Due to As doping some of these sites grow fast and form epitaxial columns that further grow laterally at the expense of the surrounding polycrystalline grains.


1992 ◽  
Vol 283 ◽  
Author(s):  
Hiroshi Iwata ◽  
Tomoyuki Nohda ◽  
Satoshi Ishida ◽  
Takashi Kuwahara ◽  
Keiichi Sano ◽  
...  

ABSTRACTThe grain size of phosphorous (P)-doped poly-Si film has been enlarged to about 5000 Å by controlling the solidification velocity of molten Si during ArF excimer laser annealing. The drastically enlarged grain has few defects inside the grain. It has been confirmed that control of the solidification velocity is effective for P-doped poly-Si similar to the case of non-doped poly-Si films. In addition, a sheet resistance of 80 Ω/□ (ρ = 4 × 10-4 Ω · cm) has been achieved for very thin (500 Å) films by recrystallizing PECVD P-doped a-Si films.


Author(s):  
H.F. Dylla ◽  
S. Benson ◽  
J. Bisognano ◽  
C.L. Bohn ◽  
L. Cardman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document