Ferromagnetic and Paramagnetic Semiconductors Based upon GaN, AlGaN, and GaP

2001 ◽  
Vol 690 ◽  
Author(s):  
Mark E. Overberg ◽  
Gerald T. Thaler ◽  
Rachel M. Frazier ◽  
Brent P. Gila ◽  
Cammy R. Abernathy ◽  
...  

ABSTRACTEpitaxial growth of the ferromagnetic semiconductors GaMnP:C and GaMnN has been investigated by Gas Source Molecular Beam Epitaxy (GSMBE). GaMnP:C films grown with 9.4% Mn are found to be p-type with hysteretic behavior to room temperature. GaMnN films grown at 700 °C with 2.8% Mn show hysteresis at 300 K, while temperature-dependent magnetization measurements indicate that the magnetism may persist to much higher temperatures (> 325 K). Samples of AlGaMnN have also been prepared for the first time that show improved surface morphology compared to GaMnN but which show only paramagnetic behavior.

1996 ◽  
Vol 450 ◽  
Author(s):  
C. A. Wang ◽  
G. W. Turner ◽  
M. J. Manfra ◽  
H. K. Choi ◽  
D. L. Spears

ABSTRACTGai1−xInxASySb1-y (0.06 < x < 0.18, 0.05 < y < 0.14) epilayers were grown lattice-matched to GaSb substrates by low-pressure organometallic vapor phase epitaxy (OMVPE) using triethylgallium, trimethylindium, tertiarybutylarsine, and trimethylantimony. These epilayers have a mirror-like surface morphology, and exhibit room temperature photoluminescence (PL) with peak emission wavelengths (λP,300K) out to 2.4 μm. 4K PL spectra have a full width at half-maximum of 11 meV or less for λP,4K < 2.1 μm (λP,300K = 2.3 μm). Nominally undoped layers are p-type with typical 300K hole concentration of 9 × 1015 cm−3 and mobility ∼ 450 to 580 cm2/V-s for layers grown at 575°C. Doping studies are reported for the first time for GalnAsSb layers doped n type with diethyltellurium and p type with dimethylzinc. Test diodes of p-GalnAsSb/n-GaSb have an ideality factor that ranges from 1.1 to 1.3. A comparison of electrical, optical, and structural properties of epilayers grown by molecular beam epitaxy indicates OMVPE-grown layers are of comparable quality.


1997 ◽  
Vol 468 ◽  
Author(s):  
J. D. Mackenzie ◽  
C. R. Abernathy ◽  
S. J. Pearton ◽  
S. M. Donovan ◽  
U. Hömmerich ◽  
...  

ABSTRACTMetalorganic molecular beam epitaxy has been utilized to incorporate Er into AlGaN materials during growth utilizing elemental and metalorganic sources. Room temperature 1.54 μm photoluminescence was observed from AlN:Er and GaN:Er. Photoluminescence from AlN:Er doped during growth using the elemental source was several times more intense than that observed from implanted material. For the first time, strong room temperature 1.54 μm PL was observed in GaN:Er grown on Si. Temperature-dependent photoluminescence experiments indicated the 1.54 μm intensities were reduced to 60% and 40% for AlN:Er and GaN:Er, respectively, between 15 K and 300 K. The low volatility of Er(III) tris (2,2,6,6 - tetramethyl heptanedionate) and temperature limitations imposed by transport considerations limited maximum doping levels to ∼1017 cm-3 indicating that this precursor is unsuitable for UHV.


Author(s):  
А.К. Кавеев ◽  
А.Г Банщиков ◽  
А.Н Терпицкий ◽  
В.А Голяшов ◽  
О.Е Терещенко ◽  
...  

It was shown for the first time that Co subnanometer coaverage, being deposited by molecular beam epitaxy method onto the (0001) surface of the BiSbTeSe2 topological insulator at 330 °C, opens an energy band gap in the spectrum of topological surface states in the region of the Dirac point, with a shift in the position of the Dirac point caused by preliminary deposition of the adsorbate at room temperature. The gap band width is 21 +/- 6 meV. Temperature-dependent measurements in the 15-150 K range did not show any width changes.


1995 ◽  
Vol 150 ◽  
pp. 221-226
Author(s):  
T. Tomioka ◽  
N. Okamoto ◽  
H. Ando ◽  
S. Yamaura ◽  
T. Fujii

1998 ◽  
Vol 193 (1-2) ◽  
pp. 28-32 ◽  
Author(s):  
J.X. Chen ◽  
A.Z. Li ◽  
Q.K. Yang ◽  
C. Lin ◽  
Y.C. Ren ◽  
...  

1996 ◽  
Vol 159 (1-4) ◽  
pp. 257-260 ◽  
Author(s):  
M. Imaizumi ◽  
H. Kuroki ◽  
Y. Endoh ◽  
M. Suita ◽  
K. Ohtsuka ◽  
...  

2020 ◽  
Vol 49 (7) ◽  
pp. 2273-2279 ◽  
Author(s):  
Dean Hobbis ◽  
Wencong Shi ◽  
Adrian Popescu ◽  
Kaya Wei ◽  
Ryan E. Baumbach ◽  
...  

The synthesis, electronic structure and temperature dependent transport properties of polycrystalline Cu1+xMn2−xInTe4 (x = 0, 0.2, 0.3) are reported for the first time.


1993 ◽  
Vol 32 (Part 2, No. 12A) ◽  
pp. L1725-L1727 ◽  
Author(s):  
Masayuki Imaizumi ◽  
Yasuyuki Endoh ◽  
Ken-ichi Ohtsuka ◽  
Toshiro Isu ◽  
Masahiro Nunoshita

1985 ◽  
Vol 46 ◽  
Author(s):  
L.T. Parechanian ◽  
E.R. Weber ◽  
T.L. Hierl

AbstractThe simultaneous molecular beam epitaxy (MBE) growth of (100) and (110) GaAs/GaAsintentionally doped with Si(∼lE16/cm^3) was studied as a function of substrate temperature, arsenic overpressure, and epitaxial growth rate. The films wereanalyzed by scanning electron and optical microscopy, liquid helium photoluminescence (PL), and electronic characterization.For the (110) epitaxal layers, an increase in morphological defect density and degradation of PL signal was observed with a lowering of the substrate temperature from 570C. Capacitance-voltage (CV) and Hall Effect measurements yield room temperature donor concentrations for the (100) films of n∼l5/cm^3 while the (110) layers exhibit electron concentrations of n∼2El7/cm^3. Hall measurements at 77K on the (100) films show the expected mobility enhancement of Si donors, whereas the (110) epi layers become insulating or greatly compensated. This behavior suggests that room temperature conduction in the (110) films is due to a deeper donor partially compensated by an acceptor level whose concentration is of the same order of magnitude as that of any electrically active Si. Temperature dependent Hall effect indicates that the activation energy of the deeper donor level lies ∼290 meV from the conduction band. PL and Hall effect indicate that the better quality (110) material is grown by increasingthe arsenic flux during MBE growth. The nature of the defects involved with the growth process will be discussed.


Sign in / Sign up

Export Citation Format

Share Document