Growth of GaN epilayers on Si(111) substrates using multiple buffer layers

2001 ◽  
Vol 693 ◽  
Author(s):  
P.R. Hageman ◽  
S. Haffouz ◽  
A. Grzegorczk ◽  
V. Kirilyuk ◽  
P.K. Larsen

AbstractWe present a study of the growth of high quality GaN films on Si(111) substrates by MetalOrganic Chemical Vapor Deposition technique. In order to improve the quality of the epitaxial films we introduced different nucleation or buffer layers and combinations of them. Our results obtained on an optimized AlN nucleation layer will serve as reference point. In order to improve the quality of the epitaxial films we introduced different combinations of nucleation and intermediate layers. The first combination consists of an optimized AlN nucleation layer followed by a 1 m-thick GaN film, on which we deposited SixNy/GaN intermediate layers. Based on the optimized AlN nucleation layer, we introduced AlGaN/GaN superlattices or AlN intermediate buffer layers. Additionally, we present results on the modification the Si(111) surface with NH3 to promote nucleation from selective GaN islands. In all experiments the total thickness of the GaN epilayers was 3 m m. X-ray diffraction, photoluminescence, Hall measurements and atomic force microscopy were used in order to elucidate the effectiveness of these growth processes. For the most successful deposition scheme, the one with the SixNy/GaN intermediate layers, the resulting GaN layers are of high quality as compared to the other methods. The donor bound exciton, which dominates the photoluminescence spectrum, showed a full width at half maximum (FWHM) of about 50 meV at room temperature and 10 meV at 4K. The FWHM of the symmetric (0002) rocking curves in w-scan is about 640 arcsec. The root-mean-square roughness, as measured by atomic force microscopy, does not exceed 10 Å.

2021 ◽  
Author(s):  
Somayeh Asgary ◽  
Amir Hoshang Ramezani ◽  
Zhaleh Ebrahimi Nejad

Abstract WS2 flakes have been grown successfully on SiO2 substrate via chemical vapor (CVD) deposition method by reduction and sulfurization of WO3 using Ar/ H2 gas and sulfur evaporated from solid sulfur powder. The prepared samples were characterized by optical microscopy (OM), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). Large domain WS2 monolayers are obtained by extending the growth time. The perfect triangular single-crystalline WS2 flakes with an average length of more than 35 µm were achieved. The sharp PL peak (∼1.98 eV) and two distinct Raman peaks (E2g and A1g) with a ∼ 71.5 cm-1 peak split indicating that relatively high quality WS2 crystals with a regular triangle shape can be synthesized. Higher growth time shows larger triangular-shaped of WS2.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
V. Clericò ◽  
J. A. Delgado-Notario ◽  
M. Saiz-Bretín ◽  
A. V. Malyshev ◽  
Y. M. Meziani ◽  
...  

Abstract We report on a novel implementation of the cryo-etching method, which enabled us to fabricate low-roughness hBN-encapsulated graphene nanoconstrictions with unprecedented control of the structure edges; the typical edge roughness is on the order of a few nanometers. We characterized the system by atomic force microscopy and used the measured parameters of the edge geometry in numerical simulations of the system conductance, which agree quantitatively with our low temperature transport measurements. The quality of our devices is confirmed by the observation of well defined quantized 2e2/h conductance steps at zero magnetic field. To the best of our knowledge, such an observation reports the clearest conductance quantization in physically etched graphene nanoconstrictions. The fabrication of such high quality systems and the scalability of the cryo-etching method opens a novel promising possibility of producing more complex truly-ballistic devices based on graphene.


2016 ◽  
Vol 108 (5) ◽  
pp. 053303 ◽  
Author(s):  
Giovanni Mattia Lazzerini ◽  
Giuseppe Maria Paternò ◽  
Giulia Tregnago ◽  
Neil Treat ◽  
Natalie Stingelin ◽  
...  

1996 ◽  
Vol 449 ◽  
Author(s):  
A. J. Drehman ◽  
P. W. Yip

ABSTRACTUsing reactive rf sputtering, we have grown (0001) oriented ZnO films in situ on heated c-axis sapphire substrates, that are promising, particularly in terms of surface roughness, as buffer layers for the subsequent epitaxial growth of III-V nitride films. We compare the effects of on-axis and off-axis sputter geometries on the film epitaxy and smoothness. We also examined the effect of substrate temperature on the growth and smoothness and quality of the film. X-ray diffraction was used to verify the hexagonal ZnO phase, its c-axis orientation and, qualitatively, the degree of its epitaxy. Atomic Force Microscopy (AFM) was used to determine the ZnO growth morphology and roughness. Our best films, obtained by off-axis sputter deposition, have a surface roughness of less than 1 nm.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 39-42 ◽  
Author(s):  
DILIP KUMAR SINGH ◽  
P. K. IYER ◽  
P. K. GIRI

Graphene has been synthesized using thermal decomposition of ethyl alcohol in a medium pressure autoclave. The synthesis was carried out in the presence of strong alkaline solution at a temperature of ~230°C and pressure of 60 bar. The as-synthesized graphene has been characterized using atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). AFM analysis on various graphene sheets shows the presence of monolayer (n = 1) to trilayer (n = 3) graphene sheets with thickness of ~1.168 nm. HRTEM studies confirm the high quality of graphene obtained after purification of as-synthesized product. Use of chemically nonexplosive material for synthesis and reduced reaction time along with the absence of post-pyrolysis process make it a commercially viable process for bulk production of graphene.


Sign in / Sign up

Export Citation Format

Share Document