Ultra-Thin p+ Layers in GaAs

1986 ◽  
Vol 74 ◽  
Author(s):  
K. T. Short ◽  
U. K. Chakrabarti ◽  
S. J. Pearton

AbstractThe formation of shallow (0.05–0.2 μm) p+ layers in GaAs by pulse diffusion of Zn from a doped oxide source, thermal diffusion of Cd by vapor transport, or by low energy implantation of Cd, Mg, Be, Zn or Hg ions was investigated by electrochemical capacitance-voltage profiling, Secondary Ion Mass Spectrometry, Rutherford backscattering and Hall measurements. Hole densities in excess of 1019 cm−3 are obtainable by either Zn diffusion or acceptor implantation, though the high temperature cycle must be kept to ≤3 sec at (≤1000°C to prevent excessive redistribution of the acceptor dopants. Pulse diffusion at temperature °C leads to shallow regions with atomic concentrations above 1019 cm−3, but electrically active concentrations orders of magnitude less. These results are explained in terms of the unavailability of a sufficient density of vacancies at low temperatures.

2014 ◽  
Vol 806 ◽  
pp. 45-50 ◽  
Author(s):  
Roxana Arvinte ◽  
Marcin Zielinski ◽  
Thierry Chassagne ◽  
Marc Portail ◽  
Adrien Michon ◽  
...  

In the present contribution, the trends in voluntary incorporation of aluminum in 4H-SiC homoepitaxial films are investigated. The films were grown on Si-and C-face 4H-SiC 8°off substrates by chemical vapor deposition (CVD) in a horizontal, hot wall CVD reactor. Secondary Ion Mass Spectrometry (SIMS) and capacitance-voltage (C-V) measurements were used to determine the Al incorporation in the samples. The influence of Trimethylaluminum (TMA) flow rate, growth temperature, growth pressure and C/Si ratio on the dopant incorporation was studied.


2004 ◽  
Vol 810 ◽  
Author(s):  
Lilya Ihaddadene-Lecoq ◽  
Jerome Marcon ◽  
Kaouther Ketata

ABSTRACTWe have investigated and modeled the diffusion of boron implanted into crystalline silicon in the form of boron difluoride BF2+. Low energy BF2+ 1×1015 cm−2 implantations at 2.0keV were characterized using Secondary Ion Mass Spectrometry (SIMS) in order to measure dopant profiles. RTA was carried out at 950°C, 1000°C, 1050°C and 1100°C during 10s, 20s, 30s and 60s. The results show that concentration profiles for BF2+ implant are shallower than those for a direct B+ ion implantation. This could be attributed to the presence of fluorine which trap interstitial Si so that interstitial silicon supersaturation is low near the surface.


2012 ◽  
Vol 323-325 ◽  
pp. 69-74 ◽  
Author(s):  
Johanna Rahn ◽  
E. Hüger ◽  
E. Dörrer ◽  
B. Ruprecht ◽  
P. Heitjans ◽  
...  

We investigated lithium self-diffusion in amorphous and single crystalline lithium niobate at low temperatures of 323, 423 and 623 K. The diffusivity was studied by secondary ion mass spectrometry (SIMS), using ion beam sputtered6LiNbO3as a tracer source. Our intention was to get information how structural disorder influences ionic diffusivity, while chemical composition remains unchanged. The results indicate an increase of the Li diffusivity by about eight orders of magnitude in the amorphous state.


Sign in / Sign up

Export Citation Format

Share Document