Study of BF2 ion implantation into crystalline silicon : Influence of fluorine on boron diffusion

2004 ◽  
Vol 810 ◽  
Author(s):  
Lilya Ihaddadene-Lecoq ◽  
Jerome Marcon ◽  
Kaouther Ketata

ABSTRACTWe have investigated and modeled the diffusion of boron implanted into crystalline silicon in the form of boron difluoride BF2+. Low energy BF2+ 1×1015 cm−2 implantations at 2.0keV were characterized using Secondary Ion Mass Spectrometry (SIMS) in order to measure dopant profiles. RTA was carried out at 950°C, 1000°C, 1050°C and 1100°C during 10s, 20s, 30s and 60s. The results show that concentration profiles for BF2+ implant are shallower than those for a direct B+ ion implantation. This could be attributed to the presence of fluorine which trap interstitial Si so that interstitial silicon supersaturation is low near the surface.

2005 ◽  
Vol 237-240 ◽  
pp. 998-1003
Author(s):  
Mudith S.A. Karunaratne ◽  
Janet M. Bonar ◽  
Jing Zhang ◽  
Peter Ashburn ◽  
Arthur F.W. Willoughby

Boron diffusion in Si and strained SiGe with and without C was studied. Using gassource molecular beam epitaxy (MBE), B containing epitaxial layers of: (i) Si, (ii) Si containing 0.1% C, (iii) SiGe with 11% Ge and (iv) SiGe with 11% Ge and with a 0.1% C, were grown on substrates. These samples were then rapid thermal annealed (RTA) at 940, 1000 and 1050°C in an O2 ambient. Self-interstitial-, vacancy- and non-injection conditions were achieved by annealing bare, Si3N4- and Si3N4+SiO2-coated surfaces, respectively. Concentration profiles of B, Ge and C were obtained using Secondary-Ion Mass Spectrometry (SIMS). Diffusion coefficients of B in each type of matrix were extracted by computer simulation. We find that B diffusivity is reduced by both Ge and C. The suppression due to C is much larger. In all materials, a substantial enhancement of B diffusion was observed due to self-interstitial injection compared to non-injection conditions. These results indicate that B diffusion in all four types of layers is mediated primarily by interstitialcy type defects.


2008 ◽  
Vol 600-603 ◽  
pp. 453-456
Author(s):  
Margareta K. Linnarsson ◽  
J. Isberg ◽  
Adolf Schöner ◽  
Anders Hallén

The boron diffusion in three kinds of group IV semiconductors: silicon, silicon carbide and synthetic diamond has been studied by secondary ion mass spectrometry. Ion implantation of 300 keV, 11B-ions to a dose of 21014 cm-2 has been performed. The samples are subsequently annealed at temperatures ranging from 800 to 1650 °C for 5 minutes up to 8 hours. In silicon and silicon carbide, the boron diffusion is attributed to a transient process and the level of out-diffusion is correlated to intrinsic carrier concentration. No transient, out-diffused, boron tail is revealed in diamond at these temperatures.


1998 ◽  
Vol 527 ◽  
Author(s):  
R. J. Hanrahan ◽  
S. P. Withrow ◽  
M. Puga-Lambers

ABSTRACTClassical diffusion measurements in intermetallic compounds are often complicated by low diffusivities or low solubilities of the elements of interest. Using secondary ion mass spectrometry for measurements over a relatively shallow spatial range may be used to solve the problem of low diffusivity. In order to simultaneously obtain measurements on important impurity elements with low solubilities we have used ion implantation to supersaturate a narrow layer near the surface. Single crystal NiAl was implanted with either 12C or both 56Fe and 12C in order to investigate the measurement of substitutional (Fe) versus interstitial (C) tracer diffusion and the cross effect of both substitutional and interstitial diffusion. When C alone was implanted negligible diffusion was observed over the range of times and temperatures investigated. When both Fe and C were implanted together significantly enhanced diffusion of the C was observed, which is apparently associated with the movement of Fe. This supports one theory of dynamic strain aging in Fe alloyed NiAl.


2000 ◽  
Vol 650 ◽  
Author(s):  
Te-Sheng Wang ◽  
A.G. Cullis ◽  
E.J.H. Collart ◽  
A.J. Murrell ◽  
M.A. Foad

ABSTRACTBoron is the most important p-type dopant in Si and it is essential that, especially for low energy implantation, both as-implanted B distributions and those produced by annealing should be characterized in very great detail to obtain the required process control for advanced device applications. While secondary ion mass spectrometry (SIMS) is ordinarily employed for this purpose, in the present studies implant concentration profiles have been determined by direct B imaging with approximately nanometer depth and lateral resolution using energy-filtered imaging in the transmission electron microscopy. The as-implanted B impurity profile is correlated with theoretical expectations: differences with respect to the results of SIMS measurements are discussed. Changes in the B distribution and clustering that occur after annealing of the implanted layers are also described.


2014 ◽  
Vol 778-780 ◽  
pp. 575-578 ◽  
Author(s):  
Tomasz Sledziewski ◽  
Aleksey Mikhaylov ◽  
Sergey A. Reshanov ◽  
Adolf Schöner ◽  
Heiko B. Weber ◽  
...  

The effect of phosphorus (P) on the electrical properties of the 4H-SiC / SiO2interface was investigated. Phosphorus was introduced by surface-near ion implantation with varying ion energy and dose prior to thermal oxidation. Secondary ion mass spectrometry revealed that only part of the implanted P followed the oxidation front to the interface. A negative flatband shift due to residual P in the oxide was found fromC-Vmeasurements. Conductance method measurements revealed a significant reduction of density of interface trapsDitwith energyEC- Eit> 0.3 V for P+-implanted samples with [P]interface= 1.5 1018cm-3in the SiC layer at the interface.


Sign in / Sign up

Export Citation Format

Share Document