Silver Nanodisk: Synthesis, Characterization and Self-Assembly

2002 ◽  
Vol 740 ◽  
Author(s):  
Sihai Chen ◽  
Zhiyong Fan ◽  
David L. Carroll

ABSTRACTA new form of silver nanostructured materials, a silver nanodisk, is generated by a solution-phase approach. In this method, two main steps are applied: the first is the generation of the truncated triangular silver nanoplates, which are obtained by seed-mediated growth of silver particles using cetyltrimethylammonium bromide (CTAB) as the soft templates. The second is the mild aging of the above triangular silver nanoplate solution at 40 °C to get the desired silver nanodisks. Transmission electron microscopy and atomic force microscopy studies show that the nanodisk has a thickness of the order of 20 – 30 nm, and a diameter around 60 nm. X-ray and electron diffraction analysis reveal that the nanodisk is single crystal and with its basal plane as (111) lattice plane. These nanodisks display a strong surface plasmon absorption band at 475 nm; this band can be continuously tuned within 420 nm to 560 nm through adjusting the aging time. The formation of self-assembled monolayer of CTAB on the basal plane is suggested to account for both the anisotropic growth from triangular nanoplates to nanodisks, and the formation of large-scale necklace-like structures.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 622 ◽  
Author(s):  
Dorota Lachowicz ◽  
Przemyslaw Mielczarek ◽  
Roma Wirecka ◽  
Katarzyna Berent ◽  
Anna Karewicz ◽  
...  

A cationic derivative of pullulan was obtained by grafting reaction and used together with dextran sulfate to form polysaccharide-based nanohydrogel cross-linked via electrostatic interactions between polyions. Due to the polycation-polyanion interactions nanohydrogel particles were formed instantly and spontaneously in water. The nanoparticles were colloidally stable and their size and surface charge could be controlled by the polycation/polyanion ratio. The morphology of the obtained particles was visualized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The resulting structures were spherical, with hydrodynamic diameters in the range of 100–150 nm. The binding constant (Ka) of a model drug, piroxicam, to the cationic pullulan (C-PUL) was determined by spectrophotometric measurements. The value of Ka was calculated according to the Benesi—Hildebrand equation to be (3.6 ± 0.2) × 103 M−1. After binding to cationic pullulan, piroxicam was effectively entrapped inside the nanohydrogel particles and released in a controlled way. The obtained system was efficiently taken up by cells and was shown to be biocompatible.


2015 ◽  
Vol 1792 ◽  
Author(s):  
Mourad Benamara ◽  
Yuriy I. Mazur ◽  
Peter Lytvyn ◽  
Morgan E. Ware ◽  
Vitaliy Dorogan ◽  
...  

ABSTRACTThe influence of the substrate temperature on the morphology and ordering of InGaAs quantum dots (QD), grown on GaAs (001) wafers by Molecular Beam Epitaxy (MBE) under As2 flux has been studied using Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and Photoluminescence (PL) measurements. The experimental results show that lateral and vertical orderings occur for temperatures greater than 520°C and that QDs self-organize in a 6-fold symmetry network on (001) surface for T=555°C. Vertical orderings of asymmetric QDs, along directions a few degrees off [001], are observed on a large scale and their formation is discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Qingqing Wang ◽  
Guohui Li ◽  
Jinning Zhang ◽  
Fenglin Huang ◽  
Keyu Lu ◽  
...  

Single component nanofiller has shown some limitations in its performance, which can be overcome by hybrid nanofillers with two different components. In this work, montmorillonite (MMT)/graphene oxide (GO) hybrid nanofillers were formed by self-assembly and then incorporated into the polyacrylonitrile (PAN) nanofibers by electrospinning process. X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) were utilized to analyze the structures of MMT/GO hybrid nanofillers. And the effects of MMT/GO hybrid nanofillers on the morphology, thermal stability, and mechanical properties of PAN/MMT/GO composite nanofibrous membrane were examined by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and tensile test machine, respectively. The incorporation of MMT/GO hybrid nanofillers into PAN nanofibers showed a noticeable increase up to 30°C for the onset decomposition temperature and 1.32 times larger tensile strength than the pure PAN, indicating that the hybrid nanofiller is a promising candidate in improving thermal and mechanical properties of polymers.


2021 ◽  
Vol 19 (48) ◽  
pp. 66-78
Author(s):  
Lina Zeki Yahiya ◽  
Mohamed K. Dhahir

The preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of spectrum. In comparison with ZNR, the ZNR@Gr/Cu-Ag nanocomposites reveal superior absorption in the entire region of 387–1000 nm. Moreover, the band gap decreases from 3.2 eV of ZNR to 1.2 eV for ZNR@Gr/Cu-Ag nanocomposites. Taking into account the superiority of ZNR@Gr/Cu-Ag nanocomposites in terms of easy fabrication, low cost method, and environmental friendliness which made it favorable for huge-scale preparation in many applications such as water splitting, sensor, solar cell, antibacterial and optoelectronic devices.


2019 ◽  
Vol 10 ◽  
pp. 696-705 ◽  
Author(s):  
Imtiaz Ahmad ◽  
Floor Derkink ◽  
Tim Boulogne ◽  
Pantelis Bampoulis ◽  
Harold J W Zandvliet ◽  
...  

The formation of self-assembled superstructures of cetyltrimethylammonium bromide (CTAB) after drying on a nonwetting highly ordered pyrolytic graphite (HOPG) surface have been investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Although SEM did not reveal coverage of CTAB layers, AFM showed not only CTAB assembly, but also the dynamics of the process on the surface. The self-assembled layers of CTAB molecules on the HOPG terraces prior to nanorod deposition were shown to change the wettability of the surface, and as a result, gold nanorod deposition takes place on nonwetting HOPG terraces.


2014 ◽  
Vol 887-888 ◽  
pp. 161-166
Author(s):  
Xiao Jun Liu ◽  
Li Yun Song ◽  
Zong Cheng Zhan ◽  
Hong He ◽  
Xue Hong Zi ◽  
...  

The two-dimensional (2D) assembly of the palladium nanoparticles (Pd NPs) was studied in this work. The cubic Pd NPs were successfully synthesized and assembled on mica and silicon wafer in the dip-coating way. The morphology of the Pd NPs and the topography of the Pd NPs assembly on the substrates were characterized with transmission electron microscopy (TEM) and atomic force microscopy (AFM). In the process of the fabrication, the excess cetyltrimethylammonium bromide (CTAB) was removed with the deposition-redispersion strategy, the UV-vis spectra and zeta-potential of the Pd NPs colloid were measured. It was found that the assembly and AFM characterization of the Pd NPs were affected negatively by the presence of excess CTAB. The hydrophilic property of the substrate is the crucial factor to control the 2D assembly of the Pd NPs. Compared with the washed silicon wafer, mica is ultra-hydrophilic and can attract more Pd NPs.


2010 ◽  
Vol 14 (05) ◽  
pp. 446-451 ◽  
Author(s):  
Nametso Mongwaketsi ◽  
Patrick G. Ndungu ◽  
Alexander Nechaev ◽  
Malik Maaza ◽  
Raymond Sparrow

Track-etched polymer membranes are typically used as templates in the synthesis of various nanowires or nanotubes arrays. The unique advantages of track-etched membranes, such as uniform pore structure, excellent porosity, easily tailored pore sizes, and a well characterized surface chemistry, may find use in self-assembly strategies where colloidal nanostructures can be tethered to a suitable substrate to produce devices of interest. Meso-tetrakis(4-phenylsulfonicacid)porphyrin dihydrochloride and Sn(IV) tetrakis(4-pyridyl)porphyrin were used to synthesize ionic self-assembled porphyrin nanorods. The track-etched membranes surface charge was changed from negative to positive using polyethyleneimine. The porphyrin nanorods were either filtered through or self-assembled onto the surface of track-etched membranes. Comparisons were made with track-etched membranes modified with, and without, polyethyleneimine. Assembly of the porphyrin nanotubes only occurred on the surface of positively charged track-etched membranes, and filtration of the porphyrin nanorods produced a mesh-like structure on the surface of the membrane irrespective of the track-etched membrane pore diameter. In each case the characteristic absorbance profiles of the porphyrin nanorods was maintained. Transmission electron microscopy, scanning electron microscopy, atomic force microscopy, and UV-vis spectroscopy were used to characterize the various systems.


2015 ◽  
Vol 1796 ◽  
pp. 1-6 ◽  
Author(s):  
Belete Legesse ◽  
Jae-Young Cho ◽  
Rachel L. Beingessner ◽  
Takeshi Yamazaki ◽  
Hicham Fenniri

ABSTRACTRosette nanotubes (RNTs) are tubular architectures generated through the hierarchical self-assembly of the guanine-cytosine (G∧C) motif 1 or 2 (Figure 1). Motif 2 differs from 1 by the substitution at the N-atom in the G-ring with a C-atom as shown in red. In this paper, we prepare a new tricyclic G∧C base 3 from a functionalized derivative of 2 and demonstrate its self-assembly into fluorescent helical RNTs in N,N-dimethylformamide (DMF). The self-assembly and fluorescent properties of RNTs 3 were established using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-visible spectroscopy.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jing-Yuan Wu ◽  
Meng-Na Lin ◽  
Long-De Wang ◽  
Tong Zhang

Exfoliation of bulk molybdenum disulfide (MoS2) using sonication in appropriate solvent is a promising route to large-scale preparation of few-layered or monolayered crystals. Grinding-assisted sonication exfoliation was used for preparing monolayered MoS2nanosheets from natural mineral molybdenite. By controlling the sonication time, larger crystallites could be further exfoliated to smaller as well as thinner nanosheets without damaging their structures. The concentration of 1.6 mg mL−1of final solution could be achieved. Several microscopic techniques like scanning electron microscopy, transmission electron microscopy, and atomic force microscopy were employed to evaluate the exfoliation results. Strong photoluminescence with the peak centered at 440 nm was also observed in the resulting dispersion which included several small lateral-sized (~3 nm) nanostructures.


2018 ◽  
Vol 25 (02) ◽  
pp. 1850054
Author(s):  
HUMA HABIB ◽  
M. YASAR ◽  
S. MEHMOOD ◽  
SAIMA RAFIQUE ◽  
A. S. BHATTI ◽  
...  

The growth of biological systems like DNA, peptides and proteins are accredited to the self-assembly processes from the molecular level to the nanoscale. The flawless immobilization of DNA on any surface is quite an important step to the development of DNA-based biosensors. The present paper reports the use of atomic force microscopy to determine the mechanical properties of the as grown and annealed self-assembled monolayer (SAM) as well as the mutated DNA immobilized on the SAM. The SAM of alkane thiol (16-mercapto-1-hexadecanol) was developed on Au surface, which was then annealed and analyzed for its structural and mechanical properties. The surface coverage, height and monolayer’s order was studied as a function of incubation time and annealing time. Excessive annealing led to the defragmentation and desorption of SAM structures due to breaking of hydrocarbon bonds. AFM was employed to determine the detach separation, pull-off and work of adhesion of the as grown and annealed SAM.


Sign in / Sign up

Export Citation Format

Share Document