Development of An On-Chip Semiconducting Readout For Subsurface Optical Data

2002 ◽  
Vol 744 ◽  
Author(s):  
William K. Loghry ◽  
N. J. Ianno ◽  
R. O. Dillon

ABSTRACTA preliminary device was investigated as a first step in making an on-chip electrical readout based on the semiconductor CdS for a novel 3-D optical data storage method. The optical data is stored in glass as subsurface nanometer size defects called voxels. These voxels display secondary harmonic generation (SHG) to 800 nm input light. The device begins with an indium tin oxide film on a glass substrate coated with a film of Al2O3. In this preliminary device the Al2O3 was patterned via optical lithography with a periodic array of 10 micron holes that were filled with electrodeposited CdS. X-ray diffraction, and energy dispersive X-ray analysis were used to characterize the CdS. The device operation depends on the ability of the CdS with a bandgap of 2.4 eV to detect the 3.1 eV SHG light from the voxels while remaining unresponsive to 1.6 eV input light. The electrodeposited CdS was found to absorb 400 nm light at least a factor of 10 times greater than 800 nm light. Light to dark photocurrent ratios of 15 to 63 were observed from the CdS pillars using a 150 W xenon broadband light source. A light to dark ratio of about one was found when a long pass optical filter allowed only wavelengths above 750 nm. Thus the 10 micron CdS pillars have detected 400 nm light while rejecting the 800 nm input light.

2021 ◽  
Author(s):  
M Abdelhamid ◽  
A Abdel Reheem ◽  
N Kassem ◽  
A Ashour

Abstract In this study, chalcogenide material Ge 10 Se 70 Bi 20 thin films have been fabricated utilizing the thermal evaporation technique of bulk samples on glass substrates. After that, the original Ge 10 Se 70 Bi 20 thin films irradiated by different types of an ion beam. The compositions of the original film was determined by the Energy Dispersive X-Ray (EDX). X-ray diffraction (XRD) measurements were performed to characterize and examine the induced variations in the structure of Ge 10 Se 70 Bi 20 films after irradiation. From the optical measurements, the absorption edge, bandgap, Urbach energy, Tauc parameter, and extinction coefficient of the unirradiated and irradiated films were determined. In particular, the DC electrical conductivity increased by two orders after the pure film was exposed to an oxygen ion beam. Besides, the activation energy and Mott’s parameters for the original and irradiated Ge 10 Se 70 Bi 20 films were deduced. The reported variations in absorption coefficient, optical bandgap, dc electrical conductivity, and Mott’s parameters propose that the irradiated Ge 10 Se 70 B 20 thin films can be used in important applications, e.g., optical data storage and optoelectronic devices.


2021 ◽  
Vol 33 (6) ◽  
pp. 48-56
Author(s):  
SUKHDEV BAIRAGI ◽  
◽  
GHIZAL F. ANSAR ◽  

In this work we review the effect of physical and optical properties with different ion zinc contents of tellurite base glass. The physical properties of the glasses were evaluated and the change in density, molar volume and ionic packing density in these glasses indicates the effect of ZnO different content show on the glasses structure. The study of optical properties such as the optical band gap and refractive index of zinc tellurite glass were studied. Zinc Tellurite glasses doped with Er3+ ions were synthesized by varies researcher. The glasses were characterized by X- ray diffraction, optical absorption and photoluminescence spectra. The glassy nature of zinc Tellurite host glass has been confirmed through XRD measurements. The glasses doped or co-doped with rare-earth ions have generated much interest due to the possibility of several promising applications such as optical data storage, visible laser, fibre amplifier, optical communication and sensor devices


2009 ◽  
Vol 1 (2) ◽  
pp. 18-20
Author(s):  
Dahyunir Dahlan

Copper oxide particles were electrodeposited onto indium tin oxide (ITO) coated glass substrates. Electrodeposition was carried out in the electrolyte containing cupric sulphate, boric acid and glucopone. Both continuous and pulse currents methods were used in the process with platinum electrode, saturated calomel electrode (SCE) and ITO electrode as the counter, reference and working electrode respectively. The deposited particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that, using continuous current deposition, the deposited particles were mixture of Cu2O and CuO particles. By adding glucopone in the electrolyte, particles with spherical shapes were produced. Electrodeposition by using pulse current, uniform cubical shaped Cu2O particles were produced


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Mihai ◽  
F. Sava ◽  
I. D. Simandan ◽  
A. C. Galca ◽  
I. Burducea ◽  
...  

AbstractThe lack of order in amorphous chalcogenides offers them novel properties but also adds increased challenges in the discovery and design of advanced functional materials. The amorphous compositions in the Si–Ge–Te system are of interest for many applications such as optical data storage, optical sensors and Ovonic threshold switches. But an extended exploration of this system is still missing. In this study, magnetron co-sputtering is used for the combinatorial synthesis of thin film libraries, outside the glass formation domain. Compositional, structural and optical properties are investigated and discussed in the framework of topological constraint theory. The materials in the library are classified as stressed-rigid amorphous networks. The bandgap is heavily influenced by the Te content while the near-IR refractive index dependence on Ge concentration shows a minimum, which could be exploited in applications. A transition from a disordered to a more ordered amorphous network at 60 at% Te, is observed. The thermal stability study shows that the formed crystalline phases are dictated by the concentration of Ge and Te. New amorphous compositions in the Si–Ge–Te system were found and their properties explored, thus enabling an informed and rapid material selection and design for applications.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 818
Author(s):  
Xuehua Zhang ◽  
Qian Wang ◽  
Shun Liu ◽  
Wei Zhang ◽  
Fangren Hu ◽  
...  

GeO2/organically modified silane (ormosils) organic-inorganic composite films containing azobenzene were prepared by combining sol-gel technology and spin coating method. Optical waveguide properties including the refractive index and thickness of the composite films were characterized by using a prism coupling instrument. Surface morphology and photochemical properties of the composite films were investigated by atomic force microscope and Fourier transform infrared spectrometer. Results indicate that the composite films have smooth and neat surface, and excellent optical waveguide performance. Photo-isomerization properties of the composite films were studied by using a UV–Vis spectrophotometer. Optical switching performance of the composite films was also studied under the alternating exposure of 365 nm ultraviolet light and 410 nm visible light. Finally, strip waveguides and microlens arrays were built in the composite films through a UV soft imprint technique. Based on the above results, we believe that the prepared composite films are promising candidates for micro-nano optics and photonic applications, which would allow directly integrating the optical data storage and optical switching devices onto a single chip.


Sign in / Sign up

Export Citation Format

Share Document