Study of Slurry Composition Transition in a Rotary Copper CMP Process

2003 ◽  
Vol 767 ◽  
Author(s):  
Sharath Hegde ◽  
Udaya B. Patri ◽  
Anurag Jindal ◽  
S.V. Babu

AbstractThe polishing pad is one of the prime components in a typical Chemical Mechanical Polishing (CMP) process. The structure and transport properties of a polishing pad are critical in determining the particle and chemical utilization in a conventional CMP process. Our earlier paper investigated the particle retention and transport on two different polishing pads, IC-1400 and Suba-500, during copper polishing. In this paper, the results of chemical retention and transport of IC-1400 and Suba-500 pads during copper polishing are presented. The polish rate results from slurry-step-flow experiments with H2O2-glycine based slurries, where the concentrations of chemicals in the slurry are altered in steps during polishing, are correlated to the chemical retention and transport characteristics of these pads. It is found that IC-1400 has a higher chemical transport capability than Suba-500 pad, which is shown to affect the polish rates of copper.

2001 ◽  
Vol 671 ◽  
Author(s):  
Anurag Jindal ◽  
Ying Li ◽  
Satish Narayanan ◽  
S. V. Babu

ABSTRACTThis work investigates the retention and transport of chemical species and abrasive particles during chemical-mechanical polishing (CMP) of copper (Cu). “Slurry step-flow” experiments, in which the concentrations of the chemicals and abrasives in the slurry are altered in steps during polishing were conducted with hydrogen peroxide (H2O2)/glycine based slurries. Two different pads, Suba-500 and IC 1400 (with k grooves), were compared in terms of their slurry retention and transport characteristics. With these experiments, it has been shown that both the abrasives and chemicals are constantly replaced during a typical CMP process. Better polishing performance of the IC 1400 over Suba 500 is a result of improved transport of the chemicals and the abrasives between the wafer/pad interface.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
M. Y. Tsai ◽  
C. H. Chen ◽  
J. H. Chiang ◽  
T. S. Yeh

In semiconductor manufacturing, diamond disks are indispensable for dressing chemical mechanical polishing (CMP) pads. Recently, 450 mm (18 inch) diameter wafers have been used to improve output and reduce wafer production cost. To polish 450 mm diameter wafers, the diameter of polishing pads must be increased to 1050 mm. In particular, because diamond disks are limited to 100 mm diameters, a much greater number of working crystals will be required for dressing a 1050 mm diameter pad. Consequently, new diamond disks must be developed. In this study, novel arrangements are made using a braze in diamond patterns, which are radial with a cluster arrangement of 3-4 grits per cluster. Furthermore, a double-faced combined diamond disk is developed. The polishing pad surface was characterized, and the effect of different diamond conditioners on wafer removal rate was studied. This research aims to develop a more suitable diamond disk for dressing 1050 mm diameter polishing pads.


2021 ◽  
Vol 11 (10) ◽  
pp. 4358
Author(s):  
Hanchul Cho ◽  
Taekyung Lee ◽  
Doyeon Kim ◽  
Hyoungjae Kim

The uniformity of the wafer in a chemical mechanical polishing (CMP) process is vital to the ultra-fine and high integration of semiconductor structures. In particular, the uniformity of the polishing pad corresponding to the tool directly affects the polishing uniformity and wafer shape. In this study, the profile shape of a CMP pad was predicted through a kinematic simulation based on the trajectory density of the diamond abrasives of the diamond conditioner disc. The kinematic prediction was found to be in good agreement with the experimentally measured pad profile shape. Based on this, the shape error of the pad could be maintained within 10 μm even after performing the pad conditioning process for more than 2 h, through the overhang of the conditioner.


2010 ◽  
Vol 447-448 ◽  
pp. 71-75
Author(s):  
Takahiro Miyake ◽  
Toshiyuki Enomoto

In recent years, the achievement of further high flatness of workpiece edge shape is strongly required in mirror finishing. Especially, the edge roll off of silicon wafers as the substrates of semiconductor devices is demanded to decrease in the polishing process for raising the yield of IC chips. Many theoretical and experimental analyses for the edge roll off generation have been already done to meet the demand. The analyses, however, cannot fully account for the obtained edge shape in actual polishing. Concretely, the influence of the polishing pressure as one of the key polishing conditions on the edge roll off has not been clarified. In this study, the influence of the polishing pressure on the edge shape was investigated by the polishing experiments and the edge roll off generation analyses using the model based on the viscoelasticity of the polishing pad, which was proposed in the previous study. And it was revealed that an appropriate polishing pressure is needed to be set for achieving high flatness of workpiece edge shape with the consideration of the properties of applied polishing pads.


2010 ◽  
Vol 126-128 ◽  
pp. 82-87
Author(s):  
Mao Li ◽  
Yong Wei Zhu ◽  
Jun Li ◽  
Jian Feng Ye ◽  
Ji Long Fan

The polishing pad plays a significant role in the Chemical Mechanical Polishing (CMP) process and its wear influences the surface accuracy of the polished wafer. A new polishing pad wear model is introduced and the law of pad wear along the pad radius is discussed, thus a new FAP with optimized pattern is designed and prepared in order. The flatness of the wafer lapped with a uniform pattern pad and that with an optimized pattern was compared. Results show that the PV value of the latter is lower that of the former.


2011 ◽  
Vol 215 ◽  
pp. 217-222 ◽  
Author(s):  
Y.S. Lv ◽  
Nan Li ◽  
Jun Wang ◽  
Tian Zhang ◽  
Min Duan ◽  
...  

In order to make the contact pressure distribution of polishing wafer surface more uniform during chemical mechanical polishing (CMP), a kind of the bionic polishing pad with sunflower seed pattern has been designed based on phyllotaxis theory, and the contact model and boundary condition of CMP have been established. Using finite element analysis, the contact pressure distributions between the polishing pad and wafer have been obtained when polishing silicon wafer and the effects of the phyllotactic parameter of polishing pad on the contact pressure distribution are found. The results show that the uniformity of the contact pressure distribution can be improved and the singularity of the contact pressure in the boundary edge of polished wafer can be decreased when the reasonable phyllotactic parameters are selected.


2012 ◽  
Vol 497 ◽  
pp. 278-283 ◽  
Author(s):  
Chun Lan Lou ◽  
Hai Yan Di ◽  
Qiang Fang ◽  
Tao Kong ◽  
Wei Feng Yao ◽  
...  

In the chemical mechanical polishing process (CMP) ,the groove shape of polishing pad is one of the most critical elements that directly influences the quality and efficiency of CMP. This review paper describes the basic patterns of groove shape and that the patterns shape of polishing pad how to effect on quality and efficiency of CMP. The effect comparison between various sorts of groove shape and their effects on polishing is described. It is intended to help reader to gain a more comprehensive view on groove shape of polishing pad, and to be instrumental for research and development new groove shape of polishing pad for CMP.


2009 ◽  
Vol 156 (7) ◽  
pp. H535
Author(s):  
Te-Ming Kung ◽  
Chuan-Pu Liu ◽  
Shih-Chieh Chang ◽  
Kei-Wei Chen ◽  
Ying-Lang Wang

Sign in / Sign up

Export Citation Format

Share Document