Effect of Synthesis Conditions and Actinide Contents on Phase Composition of Actinide Bearing Ceramics

2003 ◽  
Vol 807 ◽  
Author(s):  
A. G. Ptashkin ◽  
S. V. Stefanovsky ◽  
S. V. Yudintsev ◽  
S. A. Perevalov

ABSTRACTPu-bearing zirconolite and pyrochlore based ceramics were prepared by melting under oxidizing and reducing conditions at 1550 °C. 239Pu content in the samples ranged between ∼10 and ∼50 wt.%. Phase composition of the ceramics and Pu partitioning were studied using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive system (SEM/EDS). Major phases in the samples were found to be the target zirconolite and pyrochlore as well as a cubic fluorite structure oxide. Normally the Pu content in the Pu host phases was 10–12 wt.%. This corresponds to the Pu content recommended for matrices for immobilization of excess weapons plutonium. At higher Pu content (up to 50 wt.%) additional phases, such as a PuO2-based cubic fluorite-structured solid solution, perovskite, and rutile were found.

IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Cristian-R. Boruntea ◽  
Peter N. R. Vennestrøm ◽  
Lars F. Lundegaard

During screening of the phase space using KOH and 1-methyl-4-aza-1-azoniabicyclo[2.2.2]octane hydroxide (1-methyl-DABCO) under hydrothermal zeolite synthesis conditions, K-paracelsian was synthesized. Scanning electron microscopy, energy dispersive X-ray spectroscopy and ex situ powder X-ray diffraction analysis revealed a material that is compositionally closely related to the mineral microcline and structurally closely related to the mineral paracelsian, both of which are feldspars. In contrast to the feldspars, K-paracelsian contains intrazeolitic water corresponding to one molecule per cage. In the case of K-paracelsian it might be useful to consider it a link between feldspars and zeolites. It was also shown that K-paracelsian can be described as the simplest endmember of a family of dense double-crankshaft zeolite topologies. By applying the identified building principle, a number of known zeolite topologies can be constructed. Furthermore, it facilitates the construction of a range of hypothetical small-pore structures that are crystallo-chemically healthy, but which have not yet been realized experimentally.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4171 ◽  
Author(s):  
Paweł Rutkowski ◽  
Jan Huebner ◽  
Adrian Graboś ◽  
Dariusz Kata ◽  
Dariusz Grzybek ◽  
...  

In this study, the influence of the addition of rare earth oxides on the phase composition and density of KNN piezoelectric ceramics was investigated. The initial powders of Na2CO3 and K2CO3 were dried at 150 °C for 2 h. Then, a powder mixture for synthesis was prepared by adding a stoichiometric amount of Nb2O5 and 5 and 10 wt % overabundance of Na2CO3. All powders were mixed by ball-milling for 24 h and synthesized at 950 °C. The phase composition of the reaction bed was checked by means of X-ray diffraction (XRD). It had an appearance of tetragonal and monoclinic K0.5Na0.5NbO3 (KNN) phases. Then, 1 and 2 wt % of Er2O3 and Yb2O3, were added to the mixture. Green samples of 25 mm diameter and 3 mm thickness were prepared and sintered by hot pressing at 1000 °C for 2 h under 25 MPa pressure. The final samples were investigated via scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS), XRD, Rietveld, and ultrasonic methods. Phase analysis showed tetragonal and orthorhombic KNN phases, and a contamination of (K2CO3·1.5H2O) was present. The obtained KNN polycrystals had a relative density above 95%. Texturing of the material was confirmed as a result of hot pressing.


2008 ◽  
Vol 368-372 ◽  
pp. 977-979
Author(s):  
Sheng Li Jin ◽  
Ya Wei Li ◽  
Jing Liu ◽  
Yuan Bing Li ◽  
Lei Zhao ◽  
...  

AlN/Al ceramic composite was fabricated by directed melt nitridation of pure Al block covered with 10wt% Mg powder at 1300°C in a high purity flowing N2. Microstructure and phase composition of the composite were investigated by scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Results showed that AlN is the main phase in the composite and its lattice parameters of a and c are 3.1110Å and 4.9806Å, respectively. The phase composition of the composite changes along the growth direction and a gradient sandwich structure forms. The surface of the composite is made up of a dense and thin nodular AlN layer, underneath which an AlN/Al layer appears, followed by an AlN/Al/MgAl2O4 layer. Thermodynamic calculations predicted the formation of possible phases with the addition of Mg. It suggested that the content of Mg at the reaction frontier of nitridation is considerably lower to 0.15wt% where MgAl2O4 was stable, because of escape and reaction exhaustion of Mg. Once Mg is lower than 0.05wt%, only a dense AlN layer can exist, which prevents the further nitridation of Al melt.


2010 ◽  
Vol 152-153 ◽  
pp. 1683-1686
Author(s):  
Qing Wang ◽  
Ya Hui Zhang

Biomorphic silicon carbide (bioSiC) was prepared by high temperature pyrolysis and sol-gel and carbothermal reduction processing at 1600 oC. The morphology and microstructure of carbon-silica composites and purified bioSiC samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the bioSiC mainly consists of cubic ß-SiC, and principally replicates the shape and microstructure of the carbon template.


2012 ◽  
Vol 602-604 ◽  
pp. 526-529
Author(s):  
Qing Wang ◽  
Lin Zhang ◽  
Ya Hui Zhang

Biomorphic TiO2 was prepared by high temperature pyrolysis and a modified sol-gel route. The morphology and microstructure of TiO2 samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the biomorphic TiO2 mainly consists of rutile TiO2, and replicates the shape and part microstructure of the carbon template.


2009 ◽  
Vol 1228 ◽  
Author(s):  
Masataka Hakamada ◽  
Yasumasa Chino ◽  
Mamoru Mabuchi

AbstractMetallic nanoporous architecture can be spontaneously attained by dealloying of a binary alloy. The nanoporous architecture can be often fabricated in noble metals such as Au and Pt. In this study, nanoporous Ni, Ni-Cu are fabricated by dealloying rolled Ni-Mn and Cu-Ni-Mn alloys, respectively. Unlike conventional Raney nickel composed of brittle Ni-Al or Cu-Al intermetallic compounds, the initial alloys had good workability probably because of their fcc crystal structures. After the electrolysis of the alloys in (NH4)2SO4 aqueous solution, nanoporous architectures of Ni and Ni-Cu with pore and ligament sizes of 10–20 nm were confirmed by scanning electron microscopy and transmission electron microscopy. X-ray diffraction analyses suggested that Ni and Cu atoms form a homogeneous solid solution in the Ni-Cu nanoporous architecture. The ligament sizes of nanoporous Ni and Ni-Cu were smaller than that of nanoporous Cu, reflecting the difference between diffusivities of Ni and Cu at solid/electrolyte interface. Ni can reduce the pore and ligament sizes of resulting nanoporous architecture when added to initial Cu-Mn alloys.


2013 ◽  
Vol 747-748 ◽  
pp. 613-618
Author(s):  
Qiao Zhang ◽  
Shu Hua Liang ◽  
Chen Zhang ◽  
Jun Tao Zou

The as-cast Ni-W alloys with 15wt%W, 25wt%W and 30wt%W were annealed in hydrogen at 1100. The effect of the annealing time on the microstructure of Ni-W alloys was studied, and the phase constituents and microstructure of annealed Ni-W alloys were characterized by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that no any phase changed for Ni-15%W, Ni-25%W and Ni-30%W alloys annealed for 60 min, 90 min and 150 min, which were still consisted of single-phase Ni (W) solid solution. However, microstructure had a significant change after annealing. With increase of annealing time, the microstructure of Ni-15%W alloy became more uniform after annealing for 90 min, and the average grain size was 95μm, whereas the grain size of Ni-15%W alloy increased significantly after annealing for 150 min. For Ni-25%W and Ni-30%W, there was no obvious change on the grain size with increase of annealing time, and the amount of oxides at grain boundaries gradually reduced. After annealing for 150 min, the impurities at grain boundaries almost disappeared. Subsequently, the annealing at 1100 for 150 min was beneficial for the desired microstructure of Ni-25%W and Ni-30%W alloys.


2008 ◽  
Vol 368-372 ◽  
pp. 995-997
Author(s):  
Cui Wei Li ◽  
Hong Xiang Zhai ◽  
Yang Zhou ◽  
Shi Bo Li ◽  
Zhi Li Zhang

In this study, free Ti/Si/Al/C powder mixtures with molar ratio of 3:0.4:0.8:1.8 were heated in Argon with various schedules, in order to reveal the possibility for the synthesis of Ti3Si0.4Al0.8C1.8 solid solution powder. X-ray diffraction (XRD) was used for the evaluation of phase identities of the powder after different treatments. Scanning electron microscopy (SEM) was used to observe the morphology of the Ti3Si0.4Al0.8C1.8 solid solution. XRD results showed that predominantly single phase samples of Ti3Si0.4Al0.8C1.8 was prepared after heating at 1400oC for 5 min in Argon and the lattice parameters of Ti3Si0.4Al0.8C1.8 lay between those of Ti3SiC2 and Ti3AlC2.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Halyna Klym ◽  
Ivan Karbovnyk ◽  
Andriy Luchechko ◽  
Yuriy Kostiv ◽  
Viktorija Pankratova ◽  
...  

BaGa2O4 ceramics doped with Eu3+ ions (1, 3 and 4 mol.%) were obtained by solid-phase sintering. The phase composition and microstructural features of ceramics were investigated using X-ray diffraction and scanning electron microscopy in comparison with energy-dispersive methods. Here, it is shown that undoped and Eu3+-doped BaGa2O4 ceramics are characterized by a developed structure of grains, grain boundaries and pores. Additional phases are mainly localized near grain boundaries creating additional defects. The evolution of defect-related extended free volumes in BaGa2O4 ceramics due to the increase in the content of Eu3+ ions was studied using the positron annihilation lifetime spectroscopy technique. It is established that the increase in the number of Eu3+ ions in the basic BaGa2O4 matrix leads to the agglomeration of free-volume defects with their subsequent fragmentation. The presence of Eu3+ ions results in the expansion of nanosized pores and an increase in their number with their future fragmentation.


Sign in / Sign up

Export Citation Format

Share Document