The effect of substrate temperature and interface oxide layer on aluminum induced crystallization of sputtered amorphous silicon
ABSTRACTThe effect of substrate temperature and interface oxide layer on aluminum induced crystallization (AIC) of amorphous silicon (a-Si) is investigated. The effect of substrate temperature on the AIC process was studied by changing the deposition temperate of a-Si from 200 to 300°C in a Al/a-Si/glass configuration. To study the effect of interface oxide on AIC, samples with a-Si/Al/glass, a-Si/Al-oxide/Al/glass, and Al/Si-oxide/a-Si/glass configurations were prepared at a fixed substrate temperature. The samples were annealed in the temperature range from 300°C to 525°C for different periods of time. The X-ray diffraction (XRD) patterns confirmed the crystallization of the a-Si films in the various configurations. From the analysis, we report that crystallization of a-Si happen at 350°C annealing temperature in the Al/a-Si/glass configuration. However, with or without the presence of Si-oxide at the interface, crystallization saturated after annealing for 20 minutes at 400°C. On the other hand, when Al-oxide is present at the interface, higher annealing temperatures and longer annealing times are required to saturate the crystallization of a-Si. Environmental Scanning Electron Microscope (ESEM) and Energy Dispersive X-Ray (EDX) mapping were used to study the surface morphology as well as the layer sequence after crystallization. This analysis revealed that Si-Al layer-exchange happens regardless of the deposited film configuration.