An Investigation of the Chemical Changes of Artists' Acrylic Paint Films When Exposed to Water

2004 ◽  
Vol 852 ◽  
Author(s):  
R. Ploeger ◽  
A. Murray ◽  
S. Hesp ◽  
D. Scalarone

ABSTRACTThis paper addresses some of the conservation concerns of artists' acrylic paints by investigating the chemical changes of the paint films caused during a one-hour exposure to water experiments and the rate at which some of the changes occur. Three different acrylic paint films were investigated. Real-time capillary rise, conductivity measurements and thermo-mechanical analysis (TMA) gave an indication of the rate at which these changes occurred. Much of the measurable leaching occurred within the first 20 minutes of the paint film being exposed to water, while the most rapid leaching occurred within the first five minutes, before approaching an equilibrium state. All physical and visual changes in colour, gloss, dimension, mass and surface morphology (using atomic force microscopy, AFM) were monitored. A decrease in size and mass indicated that material had been permanently removed from the paint films. Gloss and colour measurements, as well as AFM images, also showed evidence of changes caused by the exposure to water.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Krystyna Wnuczek ◽  
Andrzej Puszka ◽  
Łukasz Klapiszewski ◽  
Beata Podkościelna

This study presents the preparation and the thermo-mechanical characteristics of polymeric blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate (MMA) was used as an active solvent in both copolymerization approaches. Commercial polycarbonate (PC) was used as a modifying soluble additive. The preparation of blends and method of polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA), whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical structures of the copolymers were confirmed by attenuated total reflection–Fourier transform infrared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG) analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also tested. In order to evaluate the surface of the materials, their images were obtained with the use of atomic force microscopy (AFM).


2018 ◽  
Vol 9 ◽  
pp. 2906-2915 ◽  
Author(s):  
Kateřina Kopecká ◽  
Ludvík Beneš ◽  
Klára Melánová ◽  
Vítězslav Zima ◽  
Petr Knotek ◽  
...  

The use of nanosheets of layered calcium phenylphosphonate as a filler in a polymeric matrix was investigated. Layered calcium phenylphosphonate (CaPhP), with chemical formula CaC6H5PO3∙2H2O, is a hybrid organic–inorganic material that exhibits a hydrophobic character due to the presence of phenyl groups on the surface of the layers. In this paper, various CaPhP synthesis methods were studied with the aim of obtaining a product most suitable for its subsequent exfoliation. The liquid-based approach was used for the exfoliation. It was found that the most promising technique for the exfoliation of CaPhP in an amount sufficient for incorporation into polymers involved using propan-2-ol with a strong shear force generated in a high-shear disperser. The filler was tested both in its unexfoliated and exfoliated forms for the preparation of polymer composites, for which a low molecular weight epoxy resin based on bisphenol A was used as a polymer matrix. The prepared samples were characterized by powder X-ray diffraction, atomic force microscopy, optical and scanning electron microscopy, and dynamic mechanical analysis. Flammability and gas permeation tests were also performed. The addition of the nanofiller was found to influence the composite properties – the exfoliated particles were found to have a higher impact on the properties of the prepared composites than the unexfoliated particles of the same loading


Soft Matter ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. 1776-1784 ◽  
Author(s):  
Bryant L. Doss ◽  
Kiarash Rahmani Eliato ◽  
Keng-hui Lin ◽  
Robert Ros

Atomic force microscopy (AFM) is becoming an increasingly popular method for studying cell mechanics, however the existing analysis tools for determining the elastic modulus from indentation experiments are unable to quantitatively account for mechanical heterogeneity commonly found in biological samples.


2020 ◽  
Author(s):  
Antonio Doménech-Carbó ◽  
María Teresa Doménech-Carbó ◽  
Laura Osete-Cortina ◽  
Margherita Donnici ◽  
Nuria Guasch-Ferré ◽  
...  

Abstract The degradation of laboratory oil paint film specimens containing indigo and Prussian blue pigments and pictorial samples from the Sant Francesc de Paula painting exhibited in the Tomàs Balvey Arxiu Museum (Cardedeu (Catalonia), Spain) has been studied by voltammetry of immobilized particles. This technique, combined with light microscopy, scanning electron microscopy-energy dispersive X-ray analysis, nanoindentation-atomic force microscopy, attenuated total reflectance-Fourier-transform infrared spectroscopy and gas chromatography-mass spectroscopy techniques permits the proposal of a dual scheme for the degradation of the pigments when naturally aged and submitted to accelerated UVA aging. Under conditions of moderate temperature, humidity and natural illumination, and low gradients of these parameters, Prussian blue acts as a radical scavenger moderating the production of reactive oxygen species produced in the oil binding medium by the action of ultraviolet radiation, resulting in the formation, in the solid state, of the solid-solution, {KFeIII[FeII(CN)6]}x{FeIII[FeIII(CN)6]}1–x, known as Berlin green, which then promotes the formation of indigo adducts with radicals. In several localized areas of the Sant Francesc de Paula paint showing strong degradation, Prussian blue acts as a promoter of the indigo oxidation to isatin, thus resulting in a considerable chromatic shift.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 666 ◽  
Author(s):  
Said Arévalo-Alquichire ◽  
Maria Morales-Gonzalez ◽  
Kelly Navas-Gómez ◽  
Luis E. Diaz ◽  
José A. Gómez-Tejedor ◽  
...  

Polyurethanes (PUs) from Polyethylene glycol (PEG) and polycaprolactone diol (PCL) and a crosslinker, Pentaerythritol (PE), were synthetized with isophorone diisocyanate (IPDI). In this study, we investigated the effect of polyol and crosslinker composition on phase separation and thermo-mechanical properties. The properties were studied through dynamic mechanical analysis, X-ray scattering, atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The results showed changes in PUs properties, microphase structure, and separation due to the composition of polyol/crosslinker blend. So, the largest concentration of PE produced multimodal loss factor patterns, indicating segment segregation while PUs with a PEG/PCL = 1 displayed a monomodal loss factor pattern, indicating a homogeneously distributed microphase separation. Additionally, the increase of the PEG concentration enhanced the damping capacity. On the other hand, agglomeration and thread-like structures of hard segments (HS) were observed through AFM. Finally, the thermal behavior of PUs was affected by chemical composition. Lower concentration of PE reduced the crosslinking; hence, the temperature with the maximum degradation rate.


2013 ◽  
Vol 1453 ◽  
Author(s):  
Bonifacio Alvarado-Tenorio ◽  
Angel Romo-Uribe ◽  
Patrick T. Mather

ABSTRACTShape memory nanocomposites were produced following a simple one-step synthesis route initiated by a series of molar mixtures of POSS thiol nanocages and pentaerythritol tetrakis (3mercaptopropionate), and a diacrylate polycaprolactone (PCL) with Mn=3,000 g/mol. Simultaneous wide- and small- angle X ray scattering (WAXS/SAXS), differential scanning calorimetry (DSC) and atomic force microscopy (AFM) experiments were carried out and results were correlated on microstructure. Molecular identification was performed by Fourier transformed infrared (FTIR-ATR). Thermomechanical shape memory cycles revealed that the nanocomposites achieved excellent shape recovery (99%) and shape fixity (100%) parameters. Dynamic mechanical analysis showed that elastomeric modulus decrease in function of the POSS thiol molar concentration and this result is correlated with the decrease in average crosslink density (ν). WAXS studies revealed orthorhombic crystallites for PCL combined with an amorphous POSS phase when the molar concentration of POSS was low (2.5%, 5%, 10%). However, increasing the molar concentration of POSS thiol until 20%, a broad and weak reflection centered around 2θ =7.9° which corresponded to imperfect POSS crystals. At the nanoscale, SAXS analysis showed lamellar nanostructure formation for all POSS/polycaprolactone crosslinked networks. Strikingly, induced anisotropic orientation of polycaprolactone lamellar nanostructure was observed when the concentration of POSS increased to 10 and 20 mol%.


Sign in / Sign up

Export Citation Format

Share Document