scholarly journals Layered calcium phenylphosphonate: a hybrid material for a new generation of nanofillers

2018 ◽  
Vol 9 ◽  
pp. 2906-2915 ◽  
Author(s):  
Kateřina Kopecká ◽  
Ludvík Beneš ◽  
Klára Melánová ◽  
Vítězslav Zima ◽  
Petr Knotek ◽  
...  

The use of nanosheets of layered calcium phenylphosphonate as a filler in a polymeric matrix was investigated. Layered calcium phenylphosphonate (CaPhP), with chemical formula CaC6H5PO3∙2H2O, is a hybrid organic–inorganic material that exhibits a hydrophobic character due to the presence of phenyl groups on the surface of the layers. In this paper, various CaPhP synthesis methods were studied with the aim of obtaining a product most suitable for its subsequent exfoliation. The liquid-based approach was used for the exfoliation. It was found that the most promising technique for the exfoliation of CaPhP in an amount sufficient for incorporation into polymers involved using propan-2-ol with a strong shear force generated in a high-shear disperser. The filler was tested both in its unexfoliated and exfoliated forms for the preparation of polymer composites, for which a low molecular weight epoxy resin based on bisphenol A was used as a polymer matrix. The prepared samples were characterized by powder X-ray diffraction, atomic force microscopy, optical and scanning electron microscopy, and dynamic mechanical analysis. Flammability and gas permeation tests were also performed. The addition of the nanofiller was found to influence the composite properties – the exfoliated particles were found to have a higher impact on the properties of the prepared composites than the unexfoliated particles of the same loading

2016 ◽  
Vol 51 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Khaled Alfadhel ◽  
Adam Al-Mulla ◽  
Bader Al-Busairi

Polybutylene/starch/nanoclay composite blends were prepared by melt extrusion technique. Maleic anhydride grafted polybutylene was used as a compatibilizer. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, rheological, and mechanical analysis. Addition of compatibilizer to the polybutylene/starch/nanoclay showed dispersion and nucleation related to the nanoclay in the polybutylene matrix. An increase in the mechanical properties like modulus and tensile strength at break and a decrease in the elongation at break were observed on the addition of compatibilizer to the matrix compared to that of uncompatibilized matrix. The biodegradability of the nanocomposites was studied using the landfill burial test. The blends subjected to the burial test were evaluated for their tensile properties. The results revealed that the tensile strength and elongation at break of the compatibilized nanocomposites decreased after 80 days of land burial test compared to the initial period.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


2020 ◽  
Vol 92 (6) ◽  
pp. 977-984
Author(s):  
Mayya V. Kulikova ◽  
Albert B. Kulikov ◽  
Alexey E. Kuz’min ◽  
Anton L. Maximov

AbstractFor previously studied Fischer–Tropsch nanosized Fe catalyst slurries, polymer compounds with or without polyconjugating structures are used as precursors to form the catalyst nanomatrix in situ, and several catalytic experiments and X-ray diffraction and atomic force microscopy measurements are performed. The important and different roles of the paraffin molecules in the slurry medium in the formation and function of composite catalysts with the two types of aforementioned polymer matrices are revealed. In the case of the polyconjugated polymers, the alkanes in the medium are “weakly” coordinated with the metal-polymer composites, which does not affect the effectiveness of the polyconjugated polymers. Otherwise, alkane molecules form a “tight” surface layer around the composite particles, which create transport complications for the reagents and products of Fischer-Tropsch synthesis and, in some cases, can change the course of the in situ catalyst formation.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Krystyna Wnuczek ◽  
Andrzej Puszka ◽  
Łukasz Klapiszewski ◽  
Beata Podkościelna

This study presents the preparation and the thermo-mechanical characteristics of polymeric blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate (MMA) was used as an active solvent in both copolymerization approaches. Commercial polycarbonate (PC) was used as a modifying soluble additive. The preparation of blends and method of polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA), whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical structures of the copolymers were confirmed by attenuated total reflection–Fourier transform infrared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG) analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also tested. In order to evaluate the surface of the materials, their images were obtained with the use of atomic force microscopy (AFM).


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 823
Author(s):  
Shizheng Yang ◽  
Hongliang Lv ◽  
Likun Ai ◽  
Fangkun Tian ◽  
Silu Yan ◽  
...  

InP layers grown on Si (001) were achieved by the two-step growth method using gas source molecular beam epitaxy. The effects of growth temperature of nucleation layer on InP/Si epitaxial growth were investigated systematically. Cross-section morphology, surface morphology and crystal quality were characterized by scanning electron microscope images, atomic force microscopy images, high-resolution X-ray diffraction (XRD), rocking curves and reciprocal space maps. The InP/Si interface and surface became smoother and the XRD peak intensity was stronger with the nucleation layer grown at 350 °C. The Results show that the growth temperature of InP nucleation layer can significantly affect the growth process of InP film, and the optimal temperature of InP nucleation layer is required to realize a high-quality wafer-level InP layers on Si (001).


2015 ◽  
Vol 22 (02) ◽  
pp. 1550027 ◽  
Author(s):  
NADIR. F. HABUBI ◽  
RAID. A. ISMAIL ◽  
WALID K. HAMOUDI ◽  
HASSAM. R. ABID

In this work, n- ZnO /p- Si heterojunction photodetectors were prepared by drop casting of ZnO nanoparticles (NPs) on single crystal p-type silicon substrates, followed by (15–60) min; step-annealing at 600∘C. Structural, electrical, and optical properties of the ZnO NPs films deposited on quartz substrates were studied as a function of annealing time. X-ray diffraction studies showed a polycrystalline, hexagonal wurtizte nanostructured ZnO with preferential orientation along the (100) plane. Atomic force microscopy measurements showed an average ZnO grain size within the range of 75.9 nm–99.9 nm with a corresponding root mean square (RMS) surface roughness between 0.51 nm–2.16 nm. Dark and under illumination current–voltage (I–V) characteristics of the n- ZnO /p- Si heterojunction photodetectors showed an improving rectification ratio and a decreasing saturation current at longer annealing time with an ideality factor of 3 obtained at 60 min annealing time. Capacitance–voltage (C–V) characteristics of heterojunctions were investigated in order to estimate the built-in-voltage and junction type. The photodetectors, fabricated at optimum annealing time, exhibited good linearity characteristics. Maximum sensitivity was obtained when ZnO / Si heterojunctions were annealed at 60 min. Two peaks of response, located at 650 nm and 850 nm, were observed with sensitivities of 0.12–0.19 A/W and 0.18–0.39 A/W, respectively. Detectivity of the photodetectors as function of annealing time was estimated.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


Sign in / Sign up

Export Citation Format

Share Document