Large-Area Wet Micro-Printing (LAMP)for Organic Device Patterning

2005 ◽  
Vol 871 ◽  
Author(s):  
Hongzheng Jin ◽  
James C. Sturm

AbstractAn important challenge for Organic Light-Emitting Diodes (OLEDs) manufacturing is patterning method of the organic materials used for different colors. In this talk, a Large-Area wet Micro-Printing (LAMP) technique is proposed and demonstrated for organic device patterning. A printing plate is first prepared by surface engineering so that a designed surface energy pattern is achieved. The printing plate is then coated with “ink,” brought into contact the device substrate, and the “ink” is transferred. With this approach, the red (R), green (G) blue (B) sub-pixel arrays needed in a full-color display can be printed in three successive steps, one step for each color. Both single-color pixel arrays and R, G, B sub-pixel arrays have been patterned as a demonstration of the feasibility of this method. The technique has the potential advantages of low-cost and high-throughput and it avoids some of the practical problems associated with the design and operation of an ink-jet apparatus.

2011 ◽  
Vol 1335 ◽  
Author(s):  
Qiong Wu ◽  
Juanyuan Hao ◽  
Shoulei Shi ◽  
Weifeng Wang ◽  
Nan Lu

ABSTRACTWe report a low-cost and high-throughput method to fabricate large-area light emitting pattern via thermal evaporation of organic molecules on the patterned self-assembled monolayer of homogenous 3-aminopropyltrimethoxysilane. This method is based on the selective deposition of the organic light emitting molecules on the template of self-assembled monolayer (SAM), which is patterned with nanoimprinting lithography. The selectivity can be controlled by adjusting the design of the pattern, the storage duration and the substrate temperature. The deposition selectivity of the molecules may be caused by the different binding energy of the molecules with the SAM and the substrate surface.


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fumiya Osawa ◽  
Kazuhiro Marumoto

Abstract Spin-states and charge-trappings in blue organic light-emitting diodes (OLEDs) are important issues for developing high-device-performance application such as full-color displays and white illumination. However, they have not yet been completely clarified because of the lack of a study from a microscopic viewpoint. Here, we report operando electron spin resonance (ESR) spectroscopy to investigate the spin-states and charge-trappings in organic semiconductor materials used for blue OLEDs such as a blue light-emitting material 1-bis(2-naphthyl)anthracene (ADN) using metal–insulator–semiconductor (MIS) diodes, hole or electron only devices, and blue OLEDs from the microscopic viewpoint. We have clarified spin-states of electrically accumulated holes and electrons and their charge-trappings in the MIS diodes at the molecular level by directly observing their electrically-induced ESR signals; the spin-states are well reproduced by density functional theory. In contrast to a green light-emitting material, the ADN radical anions largely accumulate in the film, which will cause the large degradation of the molecule and devices. The result will give deeper understanding of blue OLEDs and be useful for developing high-performance and durable devices.


2019 ◽  
Vol 27 (07) ◽  
pp. 1950171
Author(s):  
PING LIU ◽  
JIANGHAO WANG ◽  
JIE CHENG ◽  
LIMING LIU ◽  
HONGHANG WANG ◽  
...  

A flexible organic light-emitting device (OLED) was produced using copper nanowire (CuNW) film as anode and Graphene oxide (GO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film as anode buffer layer. Compared with other transparent conductive films (TCFs), CuNWs are low cost, easy to fabricate, and compatible with flexible substrates over a large area. Due to these advantages, CuNWs are showing greater and greater promise for the next generation of TCF. Modified by PEDOT:PSS, the conductivity and work function of the CuNW film can be dramatically enhanced. However, PEDOT:PSS is highly acidic and easy to corrode the CuNW film, which will reduce maximum luminous brightness and current efficiency of the OLED. In this paper, GO/PEDOT:PSS was used as anode buffer layer to modify the CuNW anode and the composite transparent electrode exhibited excellent optoelectrical properties. The driving voltage of the OLED with CuNW/PEDOT:PSS is 6.2[Formula: see text]V, and the maximum luminous brightness is 2737.2[Formula: see text]cd/m2. The driving voltage of the OLED with CuNW/GO/PEDOT:PSS anode was reduced to 5.1[Formula: see text]V, and the maximum luminous brightness was improved to 3007.4[Formula: see text]cd/m2.


2019 ◽  
Vol 7 (8) ◽  
pp. 2212-2218 ◽  
Author(s):  
Wei Cai ◽  
Ting Zhang ◽  
Meng Xu ◽  
Miaoran Zhang ◽  
Yongjian Guo ◽  
...  

White light-emitting diode (WLED) devices are replacing the filament lamp and can provide a light close to natural sunlight, and they have thus drawn considerable attention in recent years.


2020 ◽  
Vol 6 (28) ◽  
pp. eabb5898 ◽  
Author(s):  
Minwoo Choi ◽  
Sa-Rang Bae ◽  
Luhing Hu ◽  
Anh Tuan Hoang ◽  
Soo Young Kim ◽  
...  

Electronic applications are continuously developing and taking new forms. Foldable, rollable, and wearable displays are applicable for human health care monitoring or robotics, and their operation relies on organic light-emitting diodes (OLEDs). Yet, the development of semiconducting materials with high mechanical flexibility has remained a challenge and restricted their use in unusual format electronics. This study presents a wearable full-color OLED display using a two-dimensional (2D) material-based backplane transistor. The 18-by-18 thin-film transistor array was fabricated on a thin MoS2 film that was transferred to Al2O3 (30 nm)/polyethylene terephthalate (6 μm). Red, green, and blue OLED pixels were deposited on the device surface. This 2D material offered excellent mechanical and electrical properties and proved to be capable of driving circuits for the control of OLED pixels. The ultrathin device substrate allowed for integration of the display on an unusual substrate, namely, a human hand.


1999 ◽  
Vol 558 ◽  
Author(s):  
F. Pschenitzka ◽  
J. C. Sturm

ABSTRACTA method to locally pattern the distribution of dye by diffusion into the polymer film of organic light-emitting diodes is introduced. Using a large-area diffusion source, the diffusion of dye into the polymer film can be controlled with a shadow mask. The materials used are the polymer poly(9-vinylcarbazole) (PVK) combined with electron transport molecules (PBD), and the dyes bimane, coumarin 6 and Nile red. The temperature dependence of the diffusion is investigated along with the effect of annealing of the polymer film. A model of the dye distribution is introduced and estimations of the dye profile based on this model and PL measurement are discussed. A 3-color integrated device was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document