Characterization of Nanostructured Electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD)

2005 ◽  
Vol 880 ◽  
Author(s):  
Alice Bastos ◽  
Dierk Raabe ◽  
Stefan Zaefferer ◽  
Christopher Schuh

AbstractA Cobalt-20wt.% Nickel polycrystal produced by electrodeposition has been investigated in planar and cross sections using a high resolution scanning electron microscope. The local texture, grain size, amount of phase and grain boundaries, were characterized by Electron Backscatter Diffraction (EBSD). The average grain size perpendicular to the grain growth direction was 400 nm. Parallel to it, a pronounced bimodal grain structure was observed with grains reaching more than 10 μm and grains of approximately 800 nm diameter.

Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


2012 ◽  
Vol 18 (4) ◽  
pp. 876-884 ◽  
Author(s):  
Joseph R. Michael ◽  
Bonnie B. McKenzie ◽  
Donald F. Susan

AbstractUnderstanding the growth of whiskers or high aspect ratio features on substrates can be aided when the crystallography of the feature is known. This study has evaluated three methods that utilize electron backscatter diffraction (EBSD) for the determination of the crystallographic growth direction of an individual whisker. EBSD has traditionally been a technique applied to planar, polished samples, and thus the use of EBSD for out-of-surface features is somewhat more difficult and requires additional steps. One of the methods requires the whiskers to be removed from the substrate resulting in the loss of valuable physical growth relationships between the whisker and the substrate. The other two techniques do not suffer this disadvantage and provide the physical growth information as well as the crystallographic growth directions. The final choice of method depends on the information required. The accuracy and the advantages and disadvantages of each method are discussed.


2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2012 ◽  
Vol 715-716 ◽  
pp. 340-345 ◽  
Author(s):  
R.L. Higginson ◽  
M. Blackmur ◽  
M. Gibson ◽  
J. Tyrer

This paper considers the use of Holographic Optical Elements (HOEs) to shape the weld beam and hence control the grain size of the weld bead and the grain growth and phase transformations in the HAZ. Welds have been produced on carbon steel with the introduction of a nickel based filler powder, using different energy densities produced by the HOEs. Cross sections of the welds have been analysed in terms of the weld profile, weld pool shape and grain size in the deposit and the HAZ. Electron BackScatter Diffraction (EBSD) coupled with Energy Dispersive X-ray Spectroscopy (EDS) has been used to study the microstructures developed. The results have shown that by utilising HOEs the grain size within the weld pool can be controlled such that a more equiaxed grain structure is developed when compared with the coarse columnar grains seen with a Gaussian beam.


Sign in / Sign up

Export Citation Format

Share Document