Formation of Epitaxial NiSi2 and CoSi2 On Laterally Confined (111)Si

1987 ◽  
Vol 91 ◽  
Author(s):  
C.S. Chang ◽  
C.W. Nieh ◽  
L.J. Chen

ABSTRACTEpitaxial NiSi2 of single orientation was grown on laterally confined (111)Si. Striking oxide opening size effects on the growth of NiSi2 epitaxy were observed. The formation temperature of NiSi2 on (111)Si was found to be as low as 550°C inside oxide openings 1.8 μm or smaller in size. Epitaxial NiSi2 of single orientation which is identical to that of (111)Si substrate was formed inside oxide openings of or smaller than 1.8, 1, and 0.8 μm in size in samples annealed at 550-750, 800, and 850-900°C, respectively. Preliminary results on the epitaxial growth of CoSi2 are also reported.

2021 ◽  
Vol 11 (4) ◽  
pp. 1801
Author(s):  
Takuro Fujii ◽  
Tatsurou Hiraki ◽  
Takuma Aihara ◽  
Hidetaka Nishi ◽  
Koji Takeda ◽  
...  

The rapid increase in total transmission capacity within and between data centers requires the construction of low-cost, high-capacity optical transmitters. Since a tremendous number of transmitters are required, photonic integrated circuits (PICs) using Si photonics technology enabling the integration of various functional devices on a single chip is a promising solution. A limitation of a Si-based PIC is the lack of an efficient light source due to the indirect bandgap of Si; therefore, hybrid integration technology of III-V semiconductor lasers on Si is desirable. The major challenges are that heterogeneous integration of III-V materials on Si induces the formation of dislocation at high process temperature; thus, the epitaxial regrowth process is difficult to apply. This paper reviews the evaluations conducted on our epitaxial growth technique using a directly bonded III-V membrane layer on a Si substrate. This technique enables epitaxial growth without the fundamental difficulties associated with lattice mismatch or anti-phase boundaries. In addition, crystal degradation correlating with the difference in thermal expansion is eliminated by keeping the total III-V layer thickness thinner than ~350 nm. As a result, various III-V photonic-device-fabrication technologies, such as buried regrowth, butt-joint regrowth, and selective area growth, can be applicable on the Si-photonics platform. We demonstrated the growth of indium-gallium-aluminum arsenide (InGaAlAs) multi-quantum wells (MQWs) and fabrication of lasers that exhibit >25 Gbit/s direct modulation with low energy cost. In addition, selective-area growth that enables the full O-band bandgap control of the MQW layer over the 150-nm range was demonstrated. We also fabricated indium-gallium-arsenide phosphide (InGaAsP) based phase modulators integrated with a distributed feedback laser. Therefore, the directly bonded III-V-on-Si substrate platform paves the way to manufacturing hybrid PICs for future data-center networks.


1997 ◽  
Vol 492 ◽  
Author(s):  
Sukit Llmpijumnong ◽  
Walter R. L. Lambrecht

ABSTRACTThe energy differences between various SiC polytypes are calculated using the full-potential linear muffin-tin orbital method and analyzed in terms of the anisotropie next nearest neighbor interaction (ANNNI) model. The fact that J1 + 2J2 < 0 with J1 > 0 implies that twin boundaries in otherwise cubic material are favorable unless twins occur as nearest neighbor layers. Contrary to some other recent calculations we find J1 > |J2|. We discuss the consequences of this for stabilization of cubic SiC in epitaxial growth, including considerations of the island size effects.


2019 ◽  
Vol 58 (4) ◽  
pp. 045504 ◽  
Author(s):  
Shogo Fukami ◽  
Yoshihiko Nakagawa ◽  
Mel F. Hainey ◽  
Kazuhiro Gotoh ◽  
Yasuyoshi Kurokawa ◽  
...  

2019 ◽  
Vol 217 (3) ◽  
pp. 1900523 ◽  
Author(s):  
Claire Besancon ◽  
Nicolas Vaissiere ◽  
Cécilia Dupré ◽  
Frank Fournel ◽  
Loic Sanchez ◽  
...  

1993 ◽  
Vol 320 ◽  
Author(s):  
S. L. Hsia ◽  
T. Y. Tan ◽  
P. L. Smith ◽  
G. E. Mcguire

ABSTRACTArsenic diffusion and segregation properties at the interface of the epitaxial CoSi2 and Si substrate have been studied. Samples have been prepared using Co-Ti bimetallic source materials and two types of (001) Si substrates: n+ (doped by As to ∼2}1019 cm−3) and p. For the n+ Si cases, the lower limit of the CoSi2 film formation temperature is increased by ∼200°C to ∼700°C. SIMS results showed As segregation into Si. For epitaxial CoSi2 film formation at 900°C, the As concentration has increased by a factor of ∼2 within a distance of ∼30nm from the interface, while the incorporated As in the film is ∼30-50 times less than that in Si. For p-type Si substrate cases, the epitaxial CoSi2 film was first grown and followed by As+ implantation (into the film) and drive-in processes. It is observed that As was segregated to the CoSi2-Si interface and diffused into Si. This is in qualitative agreement with our results obtained from the n+ substrate experiments and the results of other authors involving the use of polycrystalline CoSi2 films. In the present cases, all implanted As were conserved at a drive in-temperature of 1000°C for up to 100 s. This is in contrast to the polycrystalline CoSi2 film results which involve a substantial As loss to the film free surfaces. The physical reasons of this difference have been discussed.


Sign in / Sign up

Export Citation Format

Share Document