scholarly journals Radiation-induced decomposition of U(VI) alteration phases of UO2

2006 ◽  
Vol 932 ◽  
Author(s):  
Satoshi Utsunomiya ◽  
Rodney C. Ewing

ABSTRACTU6+−phases are common alteration products of spent nuclear fuel under oxidizing conditions, and they may potentially incorporate actinides, such as long-lived 239Pu and 237Np, delaying their transport to the biosphere. In order to evaluate the ballistic effects of α-decay events on the stability of the U6+−phases, we report, for the first time, the results of ion beam irradiations (1.0 MeV Kr2+) for six different structures of U6+-phases: uranophane, kasolite, boltwoodite, saleeite, carnotite, and liebigite. The target uranyl-minerals were characterized by powder X-ray diffraction and identification confirmed by SAED (selected area electron diffraction) in TEM (transmission electron microscopy). The TEM observation revealed no initial contamination of uraninite in these U6+ phases. All of the samples were irradiated with in situ TEM observation using 1.0 MeV Kr2+ in the IVEM (intermediate-voltage electron microscope) at the IVEM-Tandem Facility of Argonne National Laboratory. The ion flux was 6.3 × 1011 ions/cm2/sec. The specimen temperatures during irradiation were 298 and 673 K, respectively. The Kr2+-irradiation decomposed the U6+-phases to nanocrystals of UO2 at doses as low as 0.006 dpa. The cumulative doses for the pure U6+-phases, e.g., uranophane, at 0.1 and 1 million years (m.y.) are calculated to be 0.009 and 0.09 dpa using SRIM2003. However, with the incorporation of 1 wt.% 239Pu, the calculated doses reach 0.27 and ∼1.00 dpa in ten thousand and one hundred thousand years, respectively.Under oxidizing conditions, multiple cycles of radiation-induced decomposition to UO2 followed by alteration to U6+-phases should be further investigated to determine the fate of trace elements that may have been incorporated in the U6+-phases.

Author(s):  
M. W. Bench ◽  
I. M. Robertson ◽  
M. A. Kirk

Transmission electron microscopy experiments have been performed to investigate the lattice damage created by heavy-ion bombardments in GaAs. These experiments were undertaken to provide additional insight into the mechanisms by which individual amorphous zones and eventually amorphous layers are created. To understand these mechanisms, the structure of the defects created as a function of material, irradiating ion, dose, dose rate, and implantation tenperature have been studied using TEM. Also, the recovery of the crystalline structure by annealing has been investigated.These experiments were performed at the High-Voltage Electron Microscope - Ion Accelerator Facility at Argonne National Laboratory. This facility consists of an HVEM which has been interfaced with two ion accelerators. This coupling, plus the availability of several specimen stages permits ion irradiations to be performed in the specimen chamber of the microscope at controlled temperatures from 10 to 1000 K.


1992 ◽  
Vol 279 ◽  
Author(s):  
William J. Weber ◽  
Lu-Min Wang

ABSTRACTSingle crystals of Ca2La8(SiO4)6O2 were irradiated with 1.5 MeV Xe+, 1.5 MeV Kr+, 1.0 MeV Ar+ and 0.8 MeV Ne+ ions to investigate the effects of recoil-energy spectrum, temperature, and crystallographic orientation on irradiation-induced amorphization. The irradiations were carried out using the HVEM-Tandem Facility at Argonne National Laboratory. The structural changes and the ion fluence for complete amorphization in the electron transparent thickness of the specimens were determined by in situ transmission electron microscopy. The displacement dose determined for complete amorphization was approximately 0.6 dpa for the Xe+, Kr+, and Ar+ ion irradiations but increased to 1.4 dpa for the Ne+ ion irradiations, which may reflect an effect of lower recoil energies. The ion fluence for complete amorphization increased exponentially with temperature over the range from 25 to 400°C. Amorphization was not observed at 500°C. The activation energy associated with this simultaneous annealing process was estimated to be 0.13 eV, and the critical amorphization temperature was estimated to be 438°C for the 1.5 MeV Kr+ irradiations.


1996 ◽  
Vol 439 ◽  
Author(s):  
A. Paesano ◽  
A. T. Motta ◽  
R. C. Birtcher ◽  
E. A. Ryan ◽  
S. R. Teixeira ◽  
...  

AbstractVapor-deposited Zr-Fe multilayered thin films with various wavelengths and of overall composition either 50% Fe or Fe-rich up to 57 % Fe were either irradiated with 300 keV Kr ions at temperatures from 25K to 623 K to fluences up to 2 × 1016 cm−2, or simply annealed at 773K in-situ in the Intermediate Voltage Electron Microscope at Argonne National Laboratory. Under irradiation, the final reaction product is the amorphous phase in all cases studied, but the dose to amorphization depends on the temperature and on the wavelength. In the purely thermal case (annealing at 773 K), the 50–50 composition produces the amorphous phase but for the Fe-rich multilayers the reaction products depend on the multilayer wavelength. For small wavelength, the amorphous phase is still formed, but at large wavelength the Zr-Fe crystalline intermetallic compounds appear. These results are discussed in terms of existing models of irradiation kinetics and phase selection during solid state reaction.


2010 ◽  
Vol 1265 ◽  
Author(s):  
Karl Whittle ◽  
Mark Blackford ◽  
Robert Aughterson ◽  
Katherine L Smith ◽  
Gregory R Lumpkin ◽  
...  

AbstractThin crystals of La2O3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions in the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), at the Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1 × 1016 ions cm-2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for TiO2, are discussed with reference to the phase diagrams for La2O3-TiO2 systems and the different local environments within the crystal structures. Results suggest an observable inverse correlation between Tc and melting temperature (Tm) in the two systems.


1994 ◽  
Vol 373 ◽  
Author(s):  
N. Bordes ◽  
R.C. Ewing

AbstractBerlinite (AIPO4) is isostructural with α-quartz. Like α-quartz, berlinite undergoes a pressure-induced amorphization at 15 ±3 GPa; however, upon release of the pressure, unlike α-quartz which remains amorphous, berlinite returns to the original crystalline structure of the single crystal. Berlinite was irradiated with 1.5 MeV Kr+ at temperatures ranging from 20 to 600K. The onset of amorphization was examined by monitoring the electron diffraction pattern by in situ transmission electron microscopy (TEM) at the HVEM-Tandem Facility at Argonne National Laboratory. The berlinite was easily amorphized at 20K at a relatively low dose of 4x1013 ions/cm2 or 0.05 dpa (displacements per atom). The critical amorphization dose increases with the sample temperature. These experiments also showed that the focused electron beam can locally amorphize the berlinite. After these irradiations, berlinite remained amorphous. At 500 °C, berlinite began to recrystallize: small areas of crystalline material appear in the aperiodic matrix. These results suggest that pressure-induced amorphization and ion-beam induced amorphization, in the case of berlinite, are different processes that result in two different aperiodic structural states.


1996 ◽  
Vol 439 ◽  
Author(s):  
M. J. Giacobbe ◽  
N. Q. Lam ◽  
P. R. Okamoto ◽  
N. J. Zaluzec ◽  
J. F. Stubbins

AbstractThe effects of Ne and Sc implantation on radiation-induced segregation (RIS) in Ni- 9at.%Al were studied in-situ utilizing the high-voltage electron microscopeffandem accelerator facility at Argonne National Laboratory. A highly-focused 900-keV electron beam generated radial defect fluxes which, in turn, induced the transport of Al atoms toward the center of the electronirradiated area via the inverse-Kirkendall effect. The radial segregation rate of Al atoms was monitored by measuring the diameter of the γ′-Ni3Al zone which formed in the Al-enriched area during irradiation. Ne and Sc implantation effects on RIS were investigated at 550°C, while Ne effects were also examined at 625°C to determine the influence of temperature on the ability of Ne to act as defect trapping sites, causing RIS suppression. It was found that the RIS suppression effect of Ne increased with increasing irradiation temperature, and that Sc had a small RIS suppression effect which increased with increasing Sc implantation dose. Ne bubbles which formed during implantation are believed to be responsible for its strong suppression effect.


1985 ◽  
Vol 51 ◽  
Author(s):  
James Eridon ◽  
Lynn Rehn ◽  
Gary Was

ABSTRACTThe effect of ion beam mixing of nickel-aluminum alloys with 500 keV krypton ions has been investigated over a range of temperature, composition, ion dose, and post-irradiation thermal treatments. Samples were formed by aternate evaporation of layers of aluminum and nickel. A portion of these samples was subsequently annealed to form intermetallic compunds. Irradiations were performed at both room temperature and 80 K using the 2 MV ion accelerator at Argonne National Laboratory. Phase transformations were observed during both in situ irradiations in the High Voltage Electron Microscope(HVEM) at Argonne and also in subsequent analysis of an array of irradiated samples. Electron diffraction indicates the presence of metastable crystalline structures not present in the conventional nickel-aluminum phase diagram. Transformations occur at doses as low as 5×1014 cm−2 and continue to develop as the irradiation progresses up to 2×l016 cm−2. Layer mixing is followed through Rutherford Backscattering analysis. Samples are also checked with x-rays and Electron Energy Loss Spectroscopy (EELS). A thermodynamic argument is presented to explain the phase transformations in terms of movements on a free energy diagram. This analysis explains the interesting paradox concerning the radiation hardness of the NiAl[l] phase and the amorphous structure of mixed Ni-50% Al layers[2].


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


2000 ◽  
Vol 6 (S2) ◽  
pp. 368-369
Author(s):  
N.L. Dietz ◽  
D.D Keiser

Argonne National Laboratory has developed an electrometallurgical treatment process for metallic spent nuclear fuel from the Experimental Breeder Reactor-II. This process stabilizes metallic sodium and separates usable uranium from fission products and transuranic elements that are contained in the fuel. The fission products and other waste constituents are placed into two waste forms: a ceramic waste form that contains the transuranic elements and active fission products such as Cs, Sr, I and the rare earth elements, and a metal alloy waste form composed primarily of stainless steel (SS), from claddings hulls and reactor hardware, and ∼15 wt.% Zr (from the U-Zr and U-Pu-Zr alloy fuels). The metal waste form (MWF) also contains noble metal fission products (Tc, Nb, Ru, Rh, Te, Ag, Pd, Mo) and minor amounts of actinides. Both waste forms are intended for eventual disposal in a geologic repository.


1988 ◽  
Vol 100 ◽  
Author(s):  
M. W. Bench ◽  
I. M. Robertson ◽  
M. A. Kirk

ABSTRACTTransmission electron microscopy experiments have been performed to investigate the lattice damage created by heavy-ion bombardments in GaAs. These experiments have been performed in situ by using the HVEN - Ion Accelerator Facility at Argonne National Laboratory. The ion bcorbardments (50 keV Ar+ and Kr+) and the microscopy have been carried out at temperatures rangrin from 30 to 300 K. Ion fluences ranged from 2 × 1011 to 5 × 1013 ions cm−2.Direct-inpact amorphization is observed to occur in both n-type and semi-insulating GaAs irradiated to low ion doses at 30 K and room temperature. The probability of forming a visible defect is higher for low temperature irradiations than for room temperature irradiations. The amorphous zones formed at low temperature are stable to temperatures above 250 K. Post implantation annealing is seen to occur at room temperature for all samples irradiated to low doses until eventually all visible damage disappears.


Sign in / Sign up

Export Citation Format

Share Document