scholarly journals Potency of Some Plant Extracts and Pesticides on Bacterial Leaf Blight Diseases of Cocoyam (Colocasia Esculenta) in Umudike, South Eastern Nigeria

2013 ◽  
Vol 3 (5) ◽  
pp. 312-319
Author(s):  
Emma Opara ◽  
◽  
Chikodi Isaiah ◽  
Theresa C. Njoku ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 16
Author(s):  
Fitri Widiantini ◽  
Avissa Ayuningdiyas ◽  
Endah Yulia ◽  
Tarkus Suganda

Resistant plants are one of the disease control techniques that considered to be effective. Resistant plants can be produced in various ways including the application of plant extracts. The aim of this study was to examine the ability of several plant extracts to increase the resistance of rice plants to bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo). A total of 13 plants were extracted and applied in two methods, which were seed treatment and seedling treatment which sprayed on two-week old rice seedlings. Xoo bacteria were inoculated on rice plants two weeks after planting. The observations on the intensity of BLB disease infection showed that water hyacinth extract (Eichhornia crassippes), spiny amaranth (Amaranthus spinosus) and jasmine leaves (Jasminum grandiflorum) can suppress the development of BLB disease in both application methods. The application of plant extracts as inducing agents needs to be repeated to maintain the activated plant defense mechanism.


2020 ◽  
Vol 8 (3) ◽  
pp. 2951-2953
Author(s):  
A Khandual ◽  
MK Mishra ◽  
H Swain ◽  
S Mohanty ◽  
PC Rath ◽  
...  

2016 ◽  
Vol 42 (1) ◽  
pp. 31 ◽  
Author(s):  
Jue LOU ◽  
Wen-Qing YANG ◽  
Zhong-Xing LI ◽  
Tian-Kuan LUO ◽  
Yong-Chu XIE ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3902
Author(s):  
Abdullahi Adamu ◽  
Khairulmazmi Ahmad ◽  
Yasmeen Siddiqui ◽  
Intan Safinar Ismail ◽  
Norhayu Asib ◽  
...  

The bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious rice diseases, causing huge yield losses worldwide. Several technologies and approaches have been opted to reduce the damage; however, these have had limited success. Recently, scientists have been focusing their efforts on developing efficient and environmentally friendly nanobactericides for controlling bacterial diseases in rice fields. In the present study, a scanning electron microscope (SEM), transmission electron microscope (TEM), and a confocal laser scanning microscope (CLSM) were utilized to investigate the mode of actions of ginger EOs on the cell structure of Xoo. The ginger EOs caused the cells to grow abnormally, resulting in an irregular form with hollow layers, whereas the dimethylsulfoxide (DMSO) treatment showed a typical rod shape for the Xoo cell. Ginger EOs restricted the growth and production of biofilms by reducing the number of biofilms generated as indicated by CLSM. Due to the instability, poor solubility, and durability of ginger EOs, a nanoemulsions approach was used, and a glasshouse trial was performed to assess their efficacy on BLB disease control. The in vitro antibacterial activity of the developed nanobactericides was promising at different concentration (50–125 µL/mL) tested. The efficacy was concentration-dependent. There was significant antibacterial activity recorded at higher concentrations. A glasshouse trial revealed that developed nanobactericides managed to suppress BLB disease severity effectively. Treatment at a concentration of 125 μL/mL was the best based on the suppression of disease severity index, AUDPC value, disease reduction (DR), and protection index (PI). Furthermore, findings on plant growth, physiological features, and yield parameters were significantly enhanced compared to the positive control treatment. In conclusion, the results indicated that ginger essential oils loaded-nanoemulsions are a promising alternative to synthetic antibiotics in suppressing Xoo growth, regulating the BLB disease, and enhancing rice yield under a glasshouse trial.


2013 ◽  
Vol 80 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Rie Gappa-Adachi ◽  
Yasuaki Morita ◽  
Yoshifumi Shimomoto ◽  
Shigeharu Takeuchi

Sign in / Sign up

Export Citation Format

Share Document