scholarly journals Determining the width of a layer cut with saws with multidirectional teeth

2021 ◽  
Vol 3 (1 (111)) ◽  
pp. 14-20
Author(s):  
Oleksandr Okhrimenko ◽  
Vyacheslav Vovk ◽  
Serhii Maidaniuk ◽  
Yuliia Lashyna

To predict the workability of a tool structure at the design stage, it is necessary to calculate the parameters of the cut layer when this tool is used because the cut layer’s size determines the strength and dynamic characteristics of the cutting process. It is known that the size and shape of the cut layer are affected by the allowance cutting scheme embedded in the tool design. Therefore, the parameters of the cut layer with the tool must be investigated taking into consideration the actual shapes and location of the cutting edges of the tool teeth and the cutting scheme with individual teeth. Existing analytical dependences on determining the thickness of the cut layer do not take into consideration the group arrangement of the teeth, which have a different shape and location of their cutting edges. Therefore, a procedure for determining the thickness of the cut layer analytically has been proposed, using the example of circular saws with multidirectional teeth while taking into consideration the patterns in the arrangement of the cutting edges of individual teeth and the real movements of the tool during its operation. The proposed procedure makes it possible to determine the parameters of the layer cut with the tool at both constant and progressive allowance cutting schemes. One can also specify the parameters of the cut layer at any time of the tool’s operation and analyze the change in the shape of the slice in time. Based on the analysis of the parameters of the cut layer, it has been established that saws with multidirectional teeth do not work with the entire width of the cutting edge but only in its part, whose share does not exceed 55 % of the width of the tool. The procedure reported here could be used to determine the loading of the cutting tool part with a more complex cutting scheme, which also includes tools that are operated by the form-generating method

Author(s):  
Ján Kováč ◽  
Milan Mikleš

Nowadays, the wood cutting process looks like a technological scheme consisting of several connected and relatively inseparable parts. The crosscutting wood is the most widespread in the process of fo­rest exploitation; it is used at tree exploitation, shortening stems and assortment production. The article deals with the influence of the cutting edge geometry of circular saws on the torque and also on the cutting performance at the crosscutting wood therefore there is the influence on the whole cutting process. In the article there is described detailed measurement procedure, used measuring devices and the process of results analysis. Knowledge of wood crosscutting process and choice of suitable cutting conditions and cutting tools will contribute to decrease production costs and energy saving.


2013 ◽  
Vol 589-590 ◽  
pp. 395-398
Author(s):  
Fang Jiang ◽  
Xi Bin Wang ◽  
Zhi Bing Liu ◽  
Huai Ming Wang

Stress analysis on wedge zone is an important step for micro-cutting tool design. The effect of stress borne by the cutting tool upon the radius of its blunt edge was analyzed, when the tool machines with minimum cutting thickness which is confined within 10-4-10-2mm. It shows that the minimal extreme value of the radius of blunt edge is existed in the process of micro-cutting tool design.


Technological aspects of the process of turning shafts with heating of their surfaces to temperatures below recrystallization point and simultaneous improvement of the heat sink from the cutting zone, as well as increasing stability of the cutting edge of a tool. A constructive diagram of the tool device has been developed, which allows for high-performance machining with a given quality of the surfaces of parts from hard materials on lathe equipment.


Author(s):  
А.Н. Синько ◽  
Т.Ю. Никонова ◽  
В.В. Юрченко ◽  
А.К. Матешов ◽  
И.А. Марченко

В статье авторами проведено математическое моделирование процесса точения с использованием волнового воздействия на режущий инструмент. Установлены зависимости между видом образующейся стружки и качеством обработанной поверхности от интенсивности вводимых в зону резания колебаний, а также численные данные параметров режима резания. Авторами установлено, что существует определенный оптимальный уровень колебаний, при котором наблюдается максимальная стойкость инструмента, повышение производительности и улучшение качества обработанной поверхности. Данные зависимости позволяют разработать структурную схему и последовательность проектирования операций с применением вибрационного точения. Для данного процесса авторами установлен оптимальный уровень интенсивности колебаний применительно к инструментам, оснащенным твердым сплавом, при обработке конструкционных и высоколегированных материалов. Практической значимостью работы является получение математических моделей о процессе точения с использованием вибрационного воздействия на режущий инструмент, на основании которых были получены данные и созданы прототипы режущих инструментов для применения в аппаратах вибрационного точения. Основной методикой получения математических данных о вибрационном воздействии на режущий инструмент является обобщение многочисленных экспериментальных данных, а также проведение исследования с помощью программ твердотельного проектирования. В результате исследований получены параметрические уравнения, позволяющие на стадии проектирования прогнозировать и описывать траекторию движения режущей кромки резца при вибрационном воздействии на режущий инструмент. Получены графические схемы траектории перемещения режущей кромки инструмента, демонстрирующие переменное сечение срезаемого слоя при вибрационном воздействии на режущий инструмент. The purpose of this work is to obtain mathematical data about the turning process using vibration effects on the cutting tool. The main method for obtaining mathematical data on the vibration effect on the cutting tool is to generalize numerous experimental data, as well as conducting research using solid-state design programs. In the course of the work, mathematical modeling of the turning process was carried out using the wave effect on the cutting tool. The dependences between the type of chips formed and the quality of the treated surface on the intensity of vibrations introduced into the cutting zone, as well as numerical data on the parameters of the cutting mode, are established. It has been established that there is a certain optimal level of oscillation at which the maximum tool life, increased productivity and improved quality of the treated surface are observed. These dependencies allow you to develop a block diagram and design sequence for the vibration turning operation. For vibration turning, the optimal level of vibration intensity is set for tools equipped with a hard alloy when processing structural and high-alloy materials. The obtained parametric equations make it possible to predict and describe the trajectory of the cutting edge of the cutter at the design stage when the cutting tool is vibrated. Graphic diagrams of the trajectory of the cutting edge of the cutting tool are obtained, showing a variable cross-section of the cut layer under vibration action on the cutting tool. In this work, the regularities of vibration turning during turning are shown. On the basis of which practical data were obtained and prototypes of cutting tools for use in vibration turning devices were created.


1944 ◽  
Vol 11 (3) ◽  
pp. A168-A175 ◽  
Author(s):  
M. Eugene Merchant

Abstract The author presents a mathematical analysis of the geometry and mechanics of the metal-cutting process, covering two common types of geometry which occur in cutting. This analysis offers a key for the study of engineering problems in the field of metal cutting in terms of such fundamental quantities as strain, rate of shear, friction between chip and tool, shear strength of the metal, work done in shearing the metal and in overcoming friction, etc. The two cases covered are, in essence, that of a straight-edged cutting tool moving relative to the work-piece in a direction perpendicular to its cutting edge, termed “orthogonal cutting,” and that of a similar cutting tool so set that the cutting edge is oblique to the direction of relative motion of tool and work, termed “oblique cutting.” Equations are developed which permit the calculation of such quantities as those just enumerated from readily observable values. The theoretical findings are particularly applicable and significant in the case of present-day high-speed machining operations with sintered-carbide tools.


2009 ◽  
Vol 419-420 ◽  
pp. 333-336
Author(s):  
Jeng Nan Lee ◽  
Chih Wen Luo ◽  
Hung Shyong Chen

To obtain the flexibility of choice of cutting tool and to compensate the wear of the cutting tool, this paper presents an interference-free toolpath generating method for multi-axis machining of a cylindrical cam. The notion of the proposed method is that the cutting tool is confined within the meshing element and the motion of the cutting tool follows the meshing element so that collision problem can be avoided. Based on the envelope theory, homogeneous coordinate transformation and differential geometry, the cutter location for multi-axis NC machining using cylindrical-end mill is derived and the cutting path sequences with the minimum lead in and lead out are planned. The cutting simulations with solid model are performed to verify the proposed toolpath generation method. It is also verified through the trial cut with model material on a five-axis machine tool.


1994 ◽  
Vol 7 (3) ◽  
pp. 203-216 ◽  
Author(s):  
Herchang Ay ◽  
Wen-Jet Yang ◽  
Juhchin A. Yang
Keyword(s):  

2014 ◽  
Vol 556-562 ◽  
pp. 1354-1357
Author(s):  
Li Gong Cui ◽  
Gui Qiang Liang ◽  
Fang Shao

This paper presents a mathematical method to analyze the influence of each machine tool part deformation on the machining accuracy. Taking a 3-axis machine tool as an example, this paper divides the machine tool into the cutting tool sub-system and workpiece sub-system. Taking the deformation of lower surface of the machine bed as the research target, the mathematical model of the deformation on the displacement of the cutting point was established. In order to distribute the stiffness of each part, the contribution degree of each part on the machining accuracy was analyzed. Using this mathematical model, the stiffness of each part can be distributed at the design stage of the machine tool, and the machining accuracy of the machine tool can be improved economically.


1999 ◽  
Author(s):  
Armen L. Airikyan

Abstract Everyday practice of cutting process planning requires reliable chipbreacking and this is particularly true when machining difficult-ti-machine materials as austenitic stainless steels. The use of pressed-groove type of chipbreakers prove to provide a partly solution of the problem since their utilization unavoidably leads to increasing cutting force and chipping of the cutting edge. The use of clapped-on chipbreaker seems to solve these problems. However new design and application problem arise. This paper deals with the analysis of these problema and offers a methodology for it resolving. As a result, a new type of a clamped-on chipbreaker has been developed.


Sign in / Sign up

Export Citation Format

Share Document