scholarly journals Changes of the Kara sea ice cover and sun activity

ScienceRise ◽  
2016 ◽  
Vol 4 (1 (21)) ◽  
pp. 13
Author(s):  
Александр Вадимович Холопцев ◽  
Мария Павловна Никифорова
Keyword(s):  
Sea Ice ◽  
Kara Sea ◽  
1997 ◽  
Vol 43 (143) ◽  
pp. 138-151 ◽  
Author(s):  
M. O. Jeffries ◽  
K. Morris ◽  
W.F. Weeks ◽  
A. P. Worby

AbstractSixty-three ice cores were collected in the Bellingshausen and Amundsen Seas in August and September 1993 during a cruise of the R.V. Nathaniel B. Palmer. The structure and stable-isotopic composition (18O/16O) of the cores were investigated in order to understand the growth conditions and to identify the key growth processes, particularly the contribution of snow to sea-ice formation. The structure and isotopic composition of a set of 12 cores that was collected for the same purpose in the Bellingshausen Sea in March 1992 are reassessed. Frazil ice and congelation ice contribute 44% and 26%, respectively, to the composition of both the winter and summer ice-core sets, evidence that the relatively calm conditions that favour congelation-ice formation are neither as common nor as prolonged as the more turbulent conditions that favour frazil-ice growth and pancake-ice formation. Both frazil- and congelation-ice layers have an av erage thickness of 0.12 m in winter, evidence that congelation ice and pancake ice thicken primarily by dynamic processes. The thermodynamic development of the ice cover relies heavily on the formation of snow ice at the surface of floes after sea water has flooded the snow cover. Snow-ice layers have a mean thickness of 0.20 and 0.28 m in the winter and summer cores, respectively, and the contribution of snow ice to the winter (24%) and summer (16%) core sets exceeds most quantities that have been reported previously in other Antarctic pack-ice zones. The thickness and quantity of snow ice may be due to a combination of high snow-accumulation rates and snow loads, environmental conditions that favour a warm ice cover in which brine convection between the bottom and top of the ice introduces sea water to the snow/ice interface, and bottom melting losses being compensated by snow-ice formation. Layers of superimposed ice at the top of each of the summer cores make up 4.6% of the ice that was examined and they increase by a factor of 3 the quantity of snow entrained in the ice. The accumulation of superimposed ice is evidence that melting in the snow cover on Antarctic sea-ice floes ran reach an advanced stage and contribute a significant amount of snow to the total ice mass.


Author(s):  
Xiaoyi Shen ◽  
Chang-Qing Ke ◽  
Bin Cheng ◽  
Wentao Xia ◽  
Mengmeng Li ◽  
...  

AbstractIn August 2018, a remarkable polynya was observed off the north coast of Greenland, a perennial ice zone where thick sea ice cover persists. In order to investigate the formation process of this polynya, satellite observations, a coupled ice-ocean model, ocean profiling data, and atmosphere reanalysis data were applied. We found that the thinnest sea ice cover in August since 1978 (mean value of 1.1 m, compared to the average value of 2.8 m during 1978–2017) and the modest southerly wind caused by a positive North Atlantic Oscillation (mean value of 0.82, compared to the climatological value of −0.02) were responsible for the formation and maintenance of this polynya. The opening mechanism of this polynya differs from the one formed in February 2018 in the same area caused by persistent anomalously high wind. Sea ice drift patterns have become more responsive to the atmospheric forcing due to thinning of sea ice cover in this region.


Author(s):  
Qiang Zhang ◽  
Shibo Guo ◽  
Yan Sun ◽  
JianPing Dou ◽  
Xiao-Ming Li
Keyword(s):  
Sea Ice ◽  

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mats Brockstedt Olsen Huserbråten ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Frode Vikebø

Abstract The Arctic amplification of global warming is causing the Arctic-Atlantic ice edge to retreat at unprecedented rates. Here we show how variability and change in sea ice cover in the Barents Sea, the largest shelf sea of the Arctic, affect the population dynamics of a keystone species of the ice-associated food web, the polar cod (Boreogadus saida). The data-driven biophysical model of polar cod early life stages assembled here predicts a strong mechanistic link between survival and variation in ice cover and temperature, suggesting imminent recruitment collapse should the observed ice-reduction and heating continue. Backtracking of drifting eggs and larvae from observations also demonstrates a northward retreat of one of two clearly defined spawning assemblages, possibly in response to warming. With annual to decadal ice-predictions under development the mechanistic physical-biological links presented here represent a powerful tool for making long-term predictions for the propagation of polar cod stocks.


2010 ◽  
Vol 55 (2) ◽  
pp. 831-845 ◽  
Author(s):  
Margaret I. Wallace ◽  
Finlo R. Cottier ◽  
Jørgen Berge ◽  
Geraint A. Tarling ◽  
Colin Griffiths ◽  
...  

2012 ◽  
Vol 69 (7) ◽  
pp. 1180-1193 ◽  
Author(s):  
Zachary W. Brown ◽  
Kevin R. Arrigo

Abstract Brown, Z. W., and Arrigo, K. R. 2012. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. – ICES Journal of Marine Science, 69: . Satellite remote sensing data were used to examine recent trends in sea-ice cover and net primary productivity (NPP) in the Bering Sea and Arctic Ocean. In nearly all regions, diminished sea-ice cover significantly enhanced annual NPP, indicating that light-limitation predominates across the seasonally ice-covered waters of the northern hemisphere. However, long-term trends have not been uniform spatially. The seasonal ice pack of the Bering Sea has remained consistent over time, partially because of winter winds that have continued to carry frigid Arctic air southwards over the past six decades. Hence, apart from the “Arctic-like” Chirikov Basin (where sea-ice loss has driven a 30% increase in NPP), no secular trends are evident in Bering Sea NPP, which averaged 288 ± 26 Tg C year−1 over the satellite ocean colour record (1998–2009). Conversely, sea-ice cover in the Arctic Ocean has plummeted, extending the open-water growing season by 45 d in just 12 years, and promoting a 20% increase in NPP (range 441–585 Tg C year−1). Future sea-ice loss will likely stimulate additional NPP over the productive Bering Sea shelves, potentially reducing nutrient flux to the downstream western Arctic Ocean.


Polar Biology ◽  
2021 ◽  
Author(s):  
Samuel M. Llobet ◽  
Heidi Ahonen ◽  
Christian Lydersen ◽  
Jørgen Berge ◽  
Rolf Ims ◽  
...  

AbstractMale bearded seals (Erignathus barbatus) use vocal displays to attract females and to compete with other males during the mating season. This makes it possible to monitor breeding populations of this species using passive acoustic monitoring (PAM). This study analysed year-round acoustic data records from AURAL instruments in Svalbard (Norway) to investigate seasonal variation in the acoustic presence of male bearded seals and the phenology of different call types (long, step and sweep trills) at three sites representing a variety of habitats with varied ice conditions. Male bearded seals vocalized for an extended period at a drift-ice site (Atwain; January–July) north of Spitsbergen, while the vocal season was shorter at a High Arctic land-fast-ice site (Rijpfjorden; February–June) and shorter yet again at a west-coast site that has undergone dramatic reductions in sea ice cover over the last 1.5 decades (Kongsfjorden; April–June). Generalized Additive Models showed marked seasonal segregation in the use of different trill types at Atwain, where call rates reached 400 per h, with long trills being the most numerous call type. Modest segregation of trill types was seen at Rijpfjorden, where call rates reached 300 per h, and no segregation occurred in Kongsfjorden (peak call rate 80 per h). Sea ice cover was available throughout the vocal season at Atwain and Rijpfjorden, while at Kongsfjorden peak vocal activity (May–June) occurred after the sea ice disappeared. Ongoing climate warming and sea ice reductions will likely increase the incidence of such mismatches and reduce breeding habitat for bearded seals.


Sign in / Sign up

Export Citation Format

Share Document