scholarly journals UNSTEADY ANALYSIS OF THE ISOTHERMAL PROCESS OF DRAWING QUARTZ CAPILLARIES UNDER CONDITIONS OF SMALL HARMONIC INFLUENCES

Keyword(s):  
2011 ◽  
Vol 172-174 ◽  
pp. 90-98 ◽  
Author(s):  
Tomoyuki Kakeshita ◽  
Takashi Fukuda ◽  
Yong-Hee Lee

We have investigated athermal and isothermal martensitic transformations (typical displacive transformations) in Fe–Ni, Fe–Ni–Cr, and Ni-Co-Mn-In alloys under magnetic fields and hydrostatic pressures in order to understand the time-dependent nature of martensitic transformation, that is, the kinetics of martensitic transformation. We have confirmed that the two transformation processes are closely related to each other, that is, the athermal process changes to the isothermal process and the isothermal process changes to the athermal one under a hydrostatic pressure or a magnetic field. These findings can be explained by the phenomenological theory, which gives a unified explanation for the two transformation processes previously proposed by our group.


2009 ◽  
Vol 209 (2) ◽  
pp. 792-797 ◽  
Author(s):  
L. Zhang ◽  
Y.B. Liu ◽  
Z.Y. Cao ◽  
Y.F. Zhang ◽  
Q.Q. Zhang

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1358
Author(s):  
Zhang ◽  
Fan ◽  
Yu ◽  
Zhang ◽  
Lv ◽  
...  

The mathematical model of vacuum breaker valve is significant to the protection scheme. The more accurate the vacuum breaker valve model, the more reliable the calculation results. In this study, the application conditions of the air valve model are analyzed according to the assumptions used in the derivation, and the contradictions between these assumptions are proposed. Then, according to the different working characteristics between the vacuum breaker valve on the siphon outlet pipe and the air valve, the vacuum breaker valve model is deduced based on the modified assumptions. In the derivation process, the thermodynamic change of the gas in the vacuum breaker valve is assumed to follow the isentropic process rather than an isothermal process, and the water level in the vacuum breaker valve is considered to be changeable. An engineering case is introduced, and the results calculated according to the vacuum breaker valve model are compared with those resulting from the air valve model. The results indicate that the vacuum breaker valve model is suitable for large air mass conditions and can provide a theoretical basis for the numerical simulation and settings of vacuum breaker valves.


2020 ◽  
Vol 34 (33) ◽  
pp. 2050385
Author(s):  
Ye Wang ◽  
Maoliang Hu ◽  
Hongyu Xu ◽  
Zesheng Ji ◽  
Xuefeng Wen ◽  
...  

A typical Al–Cu–Mn–Ti aluminum alloy chip was adopted to prepare semi-solid billets by a Strain-Induced Melt Activation (SIMA) method, and the effects of isothermal process parameters on the semi-solid microstructure evolution of the alloy were investigated in this work. The result showed that semi-solid billets with highly spheroidal and homogeneous fine grains could be prepared from chips by the SIMA method. With the increase of isothermal temperature, the finer and near-spherical grains are obtained, the grains coarsen and became ellipse at 903 K because of the coarsening mechanisms of coalescence and Ostwald ripening. The relationship of isothermal holding time and grains size followed the LSW theory well, and more spherical microstructure can be brought by prolonging the holding time until 3000 s. Thus, the optimal isothermal treatment temperature is 893 K and holding time is 3000 s, the corresponding average size and roundness of grains are 137 [Formula: see text]m and 1.108, respectively.


2003 ◽  
Vol 10 (05) ◽  
pp. 763-769 ◽  
Author(s):  
Bing An ◽  
Tong-Jun Zhang ◽  
Chao Yuan ◽  
Kun Cui

Biaxial zero creep experiments based on the Josell model were performed on Ag/Fe multilayer thin films to determine their interfacial free energies. Various multilayer samples on stiff wafers prepared by RF magnetron sputtering were subjected to annealing of long duration at 550°C, while a substrate curvature technique was employed for real-time film stress monitoring. Sufficient plastic flow in films makes possible a zero creep equilibrium state to present during this isothermal process, and as a result the interfacial free energies in multilayer interfaces are equilibrated with the elastic strain energies arising from the substrate bending. There is no collapse in the annealed multilayer structures. They are still stably layer-built and exhibit a column grain distribution. XRD results show that Ag and Fe layers have (111) and (110) preferred orientations, respectively. In accordance with a revised Josell model, the equilibrium stresses were measured and the Ag (111)/ Fe (110) interface free energy at 550°C was found to be 0.97 ± 0.13 J/m 2.


Sign in / Sign up

Export Citation Format

Share Document