scholarly journals REDICTORS OF FUNCTIONAL OUTCOMES IN TRAUMATIC BRAIN INJURY AT 4 MONTHS POST INJURY IN SOUTH INDIAN POPULATION

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
MCHELLA ANANDA SAI KUMAR REDDY ◽  
RAJESWARI MUTHUSAMY ◽  
SIVAKUMAR RAMACHANDRAN
2018 ◽  
Vol 28 (7) ◽  
pp. 830-851
Author(s):  
Salizar M. Ludin ◽  
Nor’ain A. Rashid ◽  
Mohamed S. Awang ◽  
Mohd B. M. Nor

Severe traumatic brain injury (TBI) survivors show physical and functional improvements but continue to have cognitive and psychosocial problems throughout recovery. However, the functional outcome of severe TBI in Malaysia is unknown. The objective of this study is to measure the functional outcomes of severe TBI within 6 months post-injury. A cohort study was done on 33 severe TBI survivors. The Glasgow Outcome Scale–Extended (GOSE) was used in this study. The mean age of the participants was 31.79 years (range: 16-73 years). The logistic regression model was statistically significant, χ²(5, N = 33) = 29.09, p < .001. The length of stay (LOS) in incentive care unit ( p = .049, odds ratio = 6.062) and duration on ventilator ( p = .048, odds ratio = 0.083) were good predictors of the functional outcomes. Future research should focus on larger sample size of severe TBI in Malaysia.


2020 ◽  
Vol 35 (6) ◽  
pp. 919-919
Author(s):  
Lange R ◽  
Lippa S ◽  
Hungerford L ◽  
Bailie J ◽  
French L ◽  
...  

Abstract Objective To examine the clinical utility of PTSD, Sleep, Resilience, and Lifetime Blast Exposure as ‘Risk Factors’ for predicting poor neurobehavioral outcome following traumatic brain injury (TBI). Methods Participants were 993 service members/veterans evaluated following an uncomplicated mild TBI (MTBI), moderate–severe TBI (ModSevTBI), or injury without TBI (Injured Controls; IC); divided into three cohorts: (1) &lt; 12 months post-injury, n = 237 [107 MTBI, 71 ModSevTBI, 59 IC]; (2) 3-years post-injury, n = 370 [162 MTBI, 80 ModSevTBI, 128 IC]; and (3) 10-years post-injury, n = 386 [182 MTBI, 85 ModSevTBI, 119 IC]. Participants completed a 2-hour neurobehavioral test battery. Odds Ratios (OR) were calculated to determine whether the ‘Risk Factors’ could predict ‘Poor Outcome’ in each cohort separately. Sixteen Risk Factors were examined using all possible combinations of the four risk factor variables. Poor Outcome was defined as three or more low scores (&lt; 1SD) on five TBI-QOL scales (e.g., Fatigue, Depression). Results In all cohorts, the vast majority of risk factor combinations resulted in ORs that were ‘clinically meaningful’ (ORs &gt; 3.00; range = 3.15 to 32.63, all p’s &lt; .001). Risk factor combinations with the highest ORs in each cohort were PTSD (Cohort 1 & 2, ORs = 17.76 and 25.31), PTSD+Sleep (Cohort 1 & 2, ORs = 18.44 and 21.18), PTSD+Sleep+Resilience (Cohort 1, 2, & 3, ORs = 13.56, 14.04, and 20.08), Resilience (Cohort 3, OR = 32.63), and PTSD+Resilience (Cohort 3, OR = 24.74). Conclusions Singularly, or in combination, PTSD, Poor Sleep, and Low Resilience were strong predictors of poor outcome following TBI of all severities and injury without TBI. These variables may be valuable risk factors for targeted early interventions following injury.


Author(s):  
Harshitha K. Punja ◽  
Dechamma Pandyanda Nanjappa ◽  
Nishith Babu ◽  
Krithika Kalladka ◽  
B. Shanti Priya Dias ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Femina Sam ◽  
Madhavi Kandagaddala ◽  
Ivan James Prithishkumar ◽  
Koyeli Mary Mahata ◽  
Mahasampath Gowri ◽  
...  

AbstractQuadriceps femoris is an extensor muscle in the anterior compartment of thigh and is traditionally taught to be composed of four heads. Recently, there is an increased interest in the occurrence of an additional muscle head of quadriceps femoris. But scientific knowledge regarding its incidence is lacking in the South Indian population. This study was done to confirm the presence of the additional head by routine anatomic dissection and radiological imaging techniques. Forty-one formalin fixed human cadaveric lower limbs were dissected and the morphology of the additional head was noted. Retrospective analysis of 88 MRI images of patients was done. The additional muscle head was present in 43.9% of the cadaveric lower limbs and was consistently located between the vastus lateralis and vastus intermedius. It originated from variable portions of the greater trochanter, intertrochanteric line, lateral lip of linea aspera and lateral surface of the shaft of femur and inserted either as a muscle belly or as an aponeurosis into the vastus intermedius (55.6%), vastus lateralis (22.2%) or directly into the base of the patella. It received its vascular supply from branches of the lateral circumflex femoral artery and was innervated by branches from the posterior division of the femoral nerve. In addition, the additional muscle head was identified by MRI and its incidence was reported to be 30.68% for the first time in living subjects. The result of this study provides additional information in understanding the morphology of the quadriceps femoris muscle.


CNS Spectrums ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 178-179
Author(s):  
John L. Sherman ◽  
Laurence J. Adams ◽  
Christen F. Kutz ◽  
Deborah York ◽  
Mitchell S. Szymczak

AbstractTraumatic brain injury (TBI) is a complex phenomenon affecting multiple areas of the brain in multiple ways. Both right and left hemispheres are affected as well as supratentorial and infratentorial compartments. These multifocal injuries are caused by many factors including acute mechanical injury, focal intracranial hemorrhage, blunt and rotational forces, epidural and subdural hematoma, hypoxemia, hypotension, edema, axonal damage, neuronal death, gliosis and blood brain barrier disruption. Clinicians and patients benefit by precise information about the neuroanatomical areas that are affected macroscopically, microscopically and biochemically in an individual patient.Standard imaging studies are frequently negative or grossly underestimate the severity of TBI and may exacerbate and prolong patient suffering with an imaging result of “no significant abnormality”. Specifically, sophisticated imaging tools have been developed which reveal significant damage to the brain structure including atrophy, MRI spectroscopy showing variations in neuronal metabolite N-acetyl-aspartate, elevations of membrane related Choline, and the glial metabolite myo-inositol is often observed to be increased post injury. In addition, susceptibility weighted imaging (SWI) has been shown to be more reliable for detecting microbleeds versus calcifications.We have selected two TBI patients with diffuse traumatic brain injury.The first patient is a 43-year-old male who suffered severe traumatic brain injury from a motorcycle accident in 2016. Following the accident, the patient was diagnosed with seizures, major depression, and intermittent explosive disorder. He has attempted suicide and has neurobehavioral disinhibition including severe anger, agitation and irritability. He denies psychiatric history prior to TBI and has negative family history. Following the TBI, he became physically aggressive and assaultive in public with minimal provocation. He denies symptoms of thought disorder and mania. He is negative for symptoms of  cognitive decline or encephalopathy.The second patient is a 49-year-old male who suffered at least 3 concussive blasts in the Army and a parachute injury. Following the last accident, the patient was diagnosed with major depressive disorder, panic disorder, PTSD and generalized anxiety disorder. He denies any psychiatric history prior to TBI including negative family history of psychiatric illness. In addition, he now suffers from nervousness, irritability, anger, emotional lability and concurrent concentration issues, problems completing tasks and alterations in memory.Both patients underwent 1.5T multiparametric MRI using standard T2, FLAIR, DWI and T1 sequences, and specialized sequences including susceptibility weighted (SWAN/SWI), 3D FLAIR, single voxel MRI spectroscopy (MRS), diffusion tensor imaging (DTI), arterial spin labeling perfusion (ASL) and volumetric MRI (NeuroQuant). Importantly, this exam can be performed in 30–45 minutes and requires no injections other than gadolinium in some patients. We will discuss the insights derived from the MRI which detail the injured areas, validate the severity of the brain damage, and provide insight into the psychological, motivational and physical disabilities that afflict these patients. It is our expectation that this kind of imaging study will grow in value as we link specific patterns of injury to specific symptoms and syndromes resulting in more targeted therapies in the future.


Author(s):  
Sara M. Lippa ◽  
Jessica Gill ◽  
Tracey A. Brickell ◽  
Louis M. French ◽  
Rael T. Lange

Abstract Objective: This study examines the relationship of serum total tau, neurofilament light (NFL), ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), and glial fibrillary acidic protein (GFAP) with neurocognitive performance in service members and veterans with a history of traumatic brain injury (TBI). Method: Service members (n = 488) with a history of uncomplicated mild (n = 172), complicated mild, moderate, severe, or penetrating TBI (sTBI; n = 126), injured controls (n = 116), and non-injured controls (n = 74) prospectively enrolled from Military Treatment Facilities. Participants completed a blood draw and neuropsychological assessment a year or more post-injury. Six neuropsychological composite scores and presence/absence of mild neurocognitive disorder (MNCD) were evaluated. Within each group, stepwise hierarchical regression models were conducted. Results: Within the sTBI group, increased serum UCH-L1 was related to worse immediate memory and delayed memory (R2Δ = .065–.084, ps < .05) performance, while increased GFAP was related to worse perceptual reasoning (R2Δ = .030, p = .036). Unexpectedly, within injured controls, UCH-L1 and GFAP were inversely related to working memory (R2Δ = .052–.071, ps < .05), and NFL was related to executive functioning (R2Δ = .039, p = .021) and MNCD (Exp(B) = 1.119, p = .029). Conclusions: Results suggest GFAP and UCH-L1 could play a role in predicting poor cognitive outcome following complicated mild and more severe TBI. Further investigation of blood biomarkers and cognition is warranted.


Morphologie ◽  
2012 ◽  
Vol 96 (312) ◽  
pp. 16-20 ◽  
Author(s):  
B.V. Murlimanju ◽  
L.V. Prabhu ◽  
M.M. Pai ◽  
M.T. Paul ◽  
V.V. Saralaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document