scholarly journals Influence of Mn2+ Concentration and UV Irradiation Time on the Luminescence Properties of Mn-doped ZnS Nanocrystals

2009 ◽  
Vol 19 (1) ◽  
pp. 33-38
Author(s):  
Tran Minh Thi

ZnS:Mn were prepared by wet chemical method with Mn doping concentration from 0 at% to 12 at%. The structure and particle size of the obtained powders were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and shown that all samples are single phase with sphalerite crystal structure and average particle size of about 5 - 7 nm. The dependence of Mn2+ ions doped concentration, and UV irradiation time on the luminescent intensity of ZnS:Mn nanocrystals was discussed.

2008 ◽  
Vol 17 (02) ◽  
pp. 205-212 ◽  
Author(s):  
NGUYEN MINH THUY ◽  
DO THI SAM ◽  
TRAN MINH THI ◽  
NGUYEN THE KHOI

In this paper, we present our study of optical properties of ZnS and ZnS : Mn at 0–12 at. % concentration Mn 2+ prepared by the wet chemical method. All the resulting ZnS samples are of the single phase with sphalerite crystal structure. The average particle size is about 5–10 nm. The photoluminescence intensity of samples is shown to increase with increasing Mn concentration, reaching a maximum at the solid solubility limit of Mn 2+ in ZnS .


2010 ◽  
Vol 93-94 ◽  
pp. 153-156 ◽  
Author(s):  
Pusit Pookmanee ◽  
Sumintra Paosorn ◽  
Sukon Phanichphant

Bismuth vanadate powder was synthesized by a chemical co-precipitation method. Bismuth nitrate and ammonium vanadate were used as the starting precursors. The yellow precipitated powder was formed after adding ammonium hydroxide until the pH of final solution was 7. The powder was filtered and dried at 60 °C for 24h and calcined at 200-400 °C for 2h. The phase of bismuth vanadate powder was studied by X-ray diffraction (XRD). A single phase of monoclinic structure was obtained after calcinations at 200-400 °C for 2h. The morphology and particle size of bismuth vanadate powder were investigated by scanning electron microscopy (SEM). The particle was irregular in shape and highly agglomerated with an average particle size of 0.5 µm in width and 1.5 µm in length.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
K. R. Nemade ◽  
S. A. Waghuley

Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with an excellent crystalline structure. Debye-Scherrer equation is used for the determination of particle size, which was found to be 9.2 nm. Tunneling electron microscope analysis indicated that the as-synthesized particles are nanoparticles with an average particle size of 9 nm. Meanwhile, the ultraviolet-visible spectroscopy of the resulting product was evaluated to study its optical property via measurement of the band gap energy value.


2013 ◽  
Vol 1506 ◽  
Author(s):  
L. Wang ◽  
B. K. Rai ◽  
S. R. Mishra

AbstractNanostructured Al3+ doped Ni0.75Zn0.25Fe2-xAlxO4 (x = 0.0,0.2,0.4,0.6,0.8, and 1.0) ferrites were synthesized via wet chemical method. X-ray diffraction, transmission electron microscopy, and magnetization measurements have been used to investigate the structural and magnetic properties of spinel ferrites calcined at 950 °C .With the doping of Al3+, the particle size of Ni0.75Zn0.25Fe2-xAlxO4 first increased to 47 nm at x = 0.4 and then decreased down to 37 nm at x = 1. Saturation magnetization decreased linearly with Al3+ due to magnetic dilution. The coercive field showed an inverse dependence on the particle size of ferrites.


2011 ◽  
Vol 412 ◽  
pp. 271-274
Author(s):  
Ying Li ◽  
Qiang Xu ◽  
Ling Dai

In order to prepare ultrafine La3NbO7 powder, a potential material for thermal barrier coatings, the calcination process of La3NbO7 was studied in this paper.The precursor of La3NbO7 was synthesized by using a citric acid complex method. A calcination process had been systematically investigated. The reaction temperature was determined by differential scanning calorimetry (DSC). The phase composition of powders was characterized by X-ray diffraction (XRD), and the morphology was obtained by scanning electron microscope (SEM). The results revealed that the single-phase La3NbO7 powder could be successfully prepared while the calcination temperature exceeded 800°C and a better morphology could be maintained at 800°C for 4 hours. Considering all above, an optimum calcination scheme was adopted at 800°C for 4 hours. The as-prepared La3NbO7 powders had a grain size of about 50nm and an average particle size of about 300nm.


2012 ◽  
Vol 02 (01) ◽  
pp. 1250007 ◽  
Author(s):  
LAXMAN SINGH ◽  
U. S. RAI ◽  
K. D. MANDAL ◽  
MADHU YASHPAL

Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650247 ◽  
Author(s):  
Mahdi Ghasemifard ◽  
Misagh Ghamari ◽  
Meysam Iziy

TiO2-(Ti[Formula: see text]Si[Formula: see text]O2 nanopowders (TS-NPs) with average particle size around 90 nm were successfully synthesized by controlled auto-combustion method by using citric acid/nitric acid (AC:NA) and urea/metal cation (U:MC). The structure of powders was studied based on their X-ray diffraction (XRD) patterns. The XRD of TS-NPs shows that rutile and anatase are the main phases of TS-NPs for AC:NA and U:MC, respectively. Particle size and histogram of nanopowders were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Optical properties of TS-NPs were calculated by Fourier transform infrared spectroscopy (FTIR) and Kramers–Kroning (KK) relation. Plasma frequencies of TS-NPs obtained from energy loss functions depend on fuels as a result of changes in crystal structure, particle size distribution, and morphology.


2013 ◽  
Vol 32 (5) ◽  
pp. 511-515 ◽  
Author(s):  
Xiao Guo Cao ◽  
Jia Wang ◽  
Qi Bai Wu ◽  
Hai Yan Zhang

AbstractYb:YAG transparent ceramic nano-powder was prepared by chemical co-precipitation method, with ammonium bicarbonate as the precipitant and polyethylene glycol as surfactant. The addition of polyethylene glycol can reduce the agglomeration and particle size of the prepared Yb:YAG powder. The morphology, thermal stability and phase structure of Yb:YAG nano-powder were charactered by scanning electron microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. The results show that well-crystallized nano-powder was obtained by calcining the precursors at 900 °C for 3 h. The average particle size of Yb:YAG powder is about 100–200 nm. When the volume amount of polyethylene glycol is 2.0%, well-dispersed Yb:YAG powder with spherical particles of 100 nm diameter was obtained.


Drug Research ◽  
2017 ◽  
Vol 67 (05) ◽  
pp. 266-270 ◽  
Author(s):  
Ebrahim Izadi ◽  
Ali Rasooli ◽  
Abolfazl Akbarzadeh ◽  
Soodabeh Davaran

AbstractThrough the present study, an eco-friendly method was used to synthesize the gold nanoparticles (GNPs) by using the sodium citrate and extract of the soybean seed as reducing the agents at PH 3. X-Ray diffraction (XRD) method was used to evaluate the crystal structure of as-synthesized NPs and it’s revealed that this method leads to well crystallized GNPs. In order to determine the particle size and their distribution, field emission scanning microscopy (FE-SEM) and dynamic light scattering (DLS) were used. The results showed that, the average particle size distribution of synthesized GNPs in solutions containing of the soybean extract and 1% citrate at PH 3 is about 109.6 and 140.9 nm, respectively. Also, we find that the average size of GNPs is 40 and 33 nm from solutions of citrate and soybean extract, respectively. It was concluded that using the extract of soybean seeds as reducing agent can lead to GNPs with small size and narrow size distribution.


Sign in / Sign up

Export Citation Format

Share Document