scholarly journals EFFECTS OF Co DOPING ON PROPERTIES OF ILMENITE NiTiO3 CERAMICS

2018 ◽  
Vol 56 (1A) ◽  
pp. 119 ◽  
Author(s):  
Tran Tat Dat

Pure and Co-doped NiTiO3 nanocrystalline powders were prepared by the sol-gel method. The effect of Co2+ doping on structural, optical and magnetic properties of NiTiO3 was investigated by X-ray diffraction, UV-vis absorption, Raman spectroscopy and vibration samples magnetometer. It was found that all fabricated samples were in single phase with rhombohedral structure. The presence of Co modifies the optical properties of the NiTiO3 nanocrystalline powders. Co doping in NiTiO3 resulted in decreasing of optical bandgap from 2.34 to 1.91 eV. The undoped and Co-doped samples

2018 ◽  
Vol 56 (1A) ◽  
pp. 219
Author(s):  
Dao Viet Thang

In this study, multiferroicMultiferroic Bi1-xYxFe0.975Ni0.025O3 (x = 0.00, 0.05, 0.10, and 0.15) called as (Y, Ni)                co-doped BiFeO3 materials were synthesized by a sol-gel method.  and characterized by X-ray diffraction diagrams and(XRD), energy-dispersive X-ray (EDX) and vibrating sample magnetization (VSM) measurements demonstrated. The result showed that Bi1-xYxFe0.975Ni0.025O3all investigated materials waspresent a single phase of the perovskite-type rhombohedral structure. Ferromagnetism and ferroelectricity of the Bi1-xYxFe0.975Ni0.025O3 materials have been investigated. Results showed that the co-doping by (Y, Ni) for (Bi, Fe)  have affected in enhancing by the (Y, Ni) co-doping, as a result the ferroelectric polarization and magnetization of BiFeO3. The magnetic characterization indicated that the ferromagnetic behavior wasthe initial BiFeO3 materialwere enhanced with increasing concentration of Y3+ for (Y, Ni) co-substituted of BiFeO3. Which could beion. It is attributed to the defferentdifference of the magnetic momentmoments of Ni2+ and Fe3+, and+ ions, as well as the Y3+-Fe3+,+ and Y3+-Ni2+ super-exchange interaction. Theinteractions. The characteristics of the investigated materials, such as remanent magnetization (Mr), saturation magnetization (Ms), remanent polarization (2Pr) and saturation polarization (2Ps) continuously increase upon increasing in the range of x from 0.00 to 0.15. When x = 0.15, the values of Mr and Ms are 0.078 and 0.794 emu/g, respectively. The values of 2Pr and 2Ps are 16.58 and 27.99 µC/cm2, respectively. Origin of ferromagnetic and ferroelectric properties of Bi1-xYxFe0.975Ni0.025O3 materials will be discussed in this paper.


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2021 ◽  
Vol 66 (1) ◽  
pp. 57-64
Author(s):  
Hang Pham Vu Bich ◽  
Yen Nguyen Hai ◽  
Mai Phung Thi Thanh ◽  
Dung Dang Duc ◽  
Hung Nguyen Manh ◽  
...  

In this study, we present the process of synthesis FexNi1-xMn2O4 (x = 0; 0.1; 0.3; 0.5; 0.7; 0.9; 1) by method sol-gel. Scanning electron microscope results shows that the particle size is about 50 nm. The X-ray diffraction diagram shows that the samples are single phase, changing structure clearly as the x ratio increases from 0 to 1. The lattice constant, the bond length also changes with x-value as shown on the Raman scattering spectrum. The results of the vibrating sample magnetometer show that the magnetism of the material FexNi1-xMn2O4 changes with the value of x and reaches a maximum in the range x from 0.5 to 0.7.


2021 ◽  
Author(s):  
Hichem Filali ◽  
Nahman Boukheit ◽  
Rafika Bouhroum ◽  
Wassila Chekirou ◽  
Ahcène Karaali

Abstract Samples of pure zinc aluminate (ZnAl2O4) and doped both with lead (Pb2+) at different ratios (0, 0.5, 1, 1.5, 2 and 2.5% mol) and a constant amount of lanthanum (La: 1% mol), were prepared by the citrate sol-gel technique, and then annealed at 900°C for 2h. In order to study the structural, optical and thermal properties; different characterization methods were used, such as: powder X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), TGA, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The Analyzes by XRD revealed the presence of the cubic single phase ZnAl2O4 for all samples, with a crystallites size between 19 and 25 nm. These results were confirmed using FTIR, Raman spectroscopy and SEM. Also, photocatalytic study for different samples of ZnAl2O4 shows that they can be used like as photocatalyst and good adsorbents for degradation of Hexamethyl crystallized violet dye in aqueous solution.


2016 ◽  
Vol 881 ◽  
pp. 491-496
Author(s):  
Nilson Santos Ferreira ◽  
A.C.B. de Oliveira ◽  
G.V.S. Mota ◽  
A.C. Cunha ◽  
Marcelo S. Silva

Fe-doped (Ce0.98Fe0.02O2−δ) cerium oxide nanoparticles were synthesized by a sol-gel-based method at 1000 °C during different calcination time (1.0, 1.5, 2.0, and 2.5h). The effect of calcination time on microstructure and structural properties of the Ce0.98Fe0.02O2−δ nanoparticles was studied by X-ray diffraction (XRD) and Raman spectroscopy measurements. Analysis of the XRD pattern shows that all samples exhibited a single-phase fluorite structurewith lattice parameters ranging from 0.540991 Å (1.0h) to0.540635 Å (2.5h). Raman spectroscopy also confirms that the Fe atoms successfully displaced some of the Ce atoms in the CeO2 lattice without forming any impure phases. XRD and Raman spectroscopy results showed that both crystallite size and the particle size increased as the calcination time increased from around 36 nm (1.0h) to 64 nm (2.5h).


2018 ◽  
Vol 54 (1A) ◽  
pp. 96
Author(s):  
Dao Viet Thang

Structural, optical and magnetic properties of polycrystalline BiFeO3 and Bi0.9RE0.1Fe0.95Ni0.05O3 (RE = Sm, Y, Nd) prepared by sol–gel method have been investigated. X-ray diffraction (XRD) patterns reveal that all samples crystalize in rhombohedrally distorted perovskite structure belonging to space group R3c. Analyzed results of both XRD and Raman scattering data show an increase of lattice distortion with co-replacing of rare earths and nickel atoms into Bi and Fe sites respectively. All samples exhibit a weak ferromagnetic behavior at room temperature with enhancement of the magnetization of RE and Ni co-doped samples.


2013 ◽  
Vol 432 ◽  
pp. 16-19
Author(s):  
Lila A. Alkhtaby

We have synthesized the Ti1-x Fex O2 (x=0.01, 0.02, 0.03 and 0.05) nanoparticles by the sol gel method to enhance the photocatalyic property of TiO2 .These samples are characterized using x-ray diffraction (XRD), Raman spectroscopy, Ultraviolet /Visible (UV/V) spectroscopy and fluorescence spectroscopy (PL). The x-ray diffraction patterns show that all the sample are formed in single phase with a complete solubility of Fe ions in the TiO2 matrix. TiO2 nanoparticles are tetragonal with anatase structure belong to the space group D41h 9 (141 ) /amd Raman active modes appear at 150, 196, 396, 483, 516 and 637cm-1. UV/V spectra show a decrease in the band gap with the increase in Fe concentration from 3.26 eV (1% Fe concentration) to3.11 eV (5% Fe concentration).


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4061
Author(s):  
Yongtao Li ◽  
Liqing Liu ◽  
Dehao Wang ◽  
Hongguang Zhang ◽  
Xuemin He ◽  
...  

BiFeO3 is considered as a single phase multiferroic. However, its magnetism is very weak. We study the magnetic properties of BiFeO3 by Cu and (Cu, Zn). Polycrystalline samples Bi(Fe0.95Cu0.05)O3 and BiFe0.95(Zn0.025Cu0.025)O3 are prepared by the sol-gel method. The magnetic properties of BiFe0.95(Zn0.025Cu0.025)O3 are greater than that of BiFeO3 and Bi(Fe0.95Cu0.05)O3. The analyses of X-ray absorption fine structure data show that the doped Cu atoms well occupy the sites of the Fe atoms. X-ray absorption near edge spectra data confirm that the valence state of Fe ions does not change. Cu and Zn metal ion co-doping has no impact on the local structure of the Fe and Bi atoms. The modification of magnetism by doping Zn can be understood by the view of the occupation site of non-magnetically active Zn2+.


2014 ◽  
Vol 989-994 ◽  
pp. 656-659
Author(s):  
Ping Cao ◽  
Yue Bai

Al co-doped ZnCoO thin film has been prepared by a sol-gel method. The structural and optical properties of the sample were investigated. X-ray diffraction and UV absorption spectroscopy analyses indicate that Al3+ and Co2+ substitute for Zn2+ without changing the wurtzite structure. With the Al doping, the visible emission increased and the UV emission decreased, which is attributed to the increase of O vacancies and Zn interstitials.


2009 ◽  
Vol 66 ◽  
pp. 167-170 ◽  
Author(s):  
Zhen Zhong Zhang ◽  
Ji Hong Zhang ◽  
Wei Zhou ◽  
Ming Xia Song ◽  
Wei Li ◽  
...  

Er3+/Yb3+ co-doped TiO2 nanocrystals were prepared by Sol-gel method in which titanium tetrachloride was adopted as the precursor. The structure, particle size, and optical properties of samples were characterized by X-ray diffraction(XRD), Field emission-Scanning Electron Microscopy(FE-SEM) and photoluminescence(PL) spectra. Er3+ concentration was fixed at 1.0mol%, and Yb3+ concentration was changed from 3 to 10mol%. Intense upconversion luminescence was observed when the samples were excited by 980nm laser. The dependence of upconversion luminescence on Yb3+ concentration was presented. The results show that the upconversion luminescence increases with the Yb3+ concentration and gets its peak at 5%. The ratio of red emission to green emission(R/G) was strikingly enhanced with the increase of Yb3+ concentration. Under the excitation of 980nm, the green emission in the range of 520-570nm (2H11/2, 4S3/2→4I15/2) and the red emission in the range of 640~690nm (4F9/2 →4I15/2) are both due to two photons process. The possible upconversion mechanism was discussed.


Sign in / Sign up

Export Citation Format

Share Document