scholarly journals Mechanisms of Damage to the Cardiovascular System in COVID-19

2021 ◽  
Vol 76 (3) ◽  
pp. 287-297
Author(s):  
Alexandr Y. Fisun ◽  
Yuriy V. Lobzin ◽  
Dmitry V. Cherkashin ◽  
Vadim V. Tyrenko ◽  
Konstantin N. Tkachenko ◽  
...  

The review article is devoted to the analysis of the literature on the various mechanisms of damage to the cardiovascular system in COVID-19. The article briefly outlines the epidemiology and urgency of the COVID-19 problem, describes the features of the clinical picture of heart muscle damage in COVID-19. The pathophysiology, morphology and pathogenetic mechanisms of myocardial involvement in cases of SARS-CoV-2 lesion are considered in detail. The authors present a diagram of various mechanisms of myocardial damage in COVID-19, which includes mediated damage to the heart muscle through angiotensin-converting enzyme 2, myocardial damage caused by hypoxemia, microvascular heart damage, and systemic inflammatory response syndrome. A detailed scheme of cardiomyocyte infection with the involvement of cytokines, which ultimately leads to myocardial remodeling and dilated cardiomyopathy, is presented. The pathophysiological foundations of the development of sudden cardiac death in COVID-19, which include the mechanisms of life-threatening arrhythmias, acute coronary syndrome, and heart failure, are considered. The authors analyzed scientific studies of the toxic effects of COVID-19 drug treatment on the heart muscle, in particular, antiviral, antibacterial, antimalarial agents. Their potential benefits and harms, as well as the likelihood of developing cardiovascular events, in particular sudden cardiac death, were assessed.

2021 ◽  
Vol 22 (9) ◽  
pp. 4691
Author(s):  
Anastasia V. Poznyak ◽  
Evgeny E. Bezsonov ◽  
Ali H. Eid ◽  
Tatyana V. Popkova ◽  
Ludmila V. Nedosugova ◽  
...  

COVID-19 is a highly contagious new infection caused by the single-stranded RNA Sars-CoV-2 virus. For the first time, this infection was recorded in December 2019 in the Chinese province of Wuhan. The virus presumably crossed the interspecies barrier and passed to humans from a bat. Initially, the disease was considered exclusively in the context of damage to the respiratory system, but it quickly became clear that the disease also entails serious consequences from various systems, including the cardiovascular system. Among these consequences are myocarditis, myocardial damage, subsequent heart failure, myocardial infarction, and Takotsubo syndrome. On the other hand, clinical data indicate that the presence of chronic diseases in a patient aggravates the course and outcome of coronavirus infection. In this context, the relationship between COVID-19 and atherosclerosis, a condition preceding cardiovascular disease and other disorders of the heart and blood vessels, is particularly interesting. The renin-angiotensin system is essential for the pathogenesis of both coronavirus disease and atherosclerosis. In particular, it has been shown that ACE2, an angiotensin-converting enzyme 2, plays a key role in Sars-CoV-2 infection due to its receptor activity. It is noteworthy that this enzyme is important for the normal functioning of the cardiovascular system. Disruptions in its production and functioning can lead to various disorders, including atherosclerosis.


2019 ◽  
Vol 5 (1 (P)) ◽  
pp. 12
Author(s):  
Dicky Armein Hanafy

Sudden cardiac death is one of the leading causes of death in the western industrial nations. Most people are affected by coronary heart disease (coronary heart disease, CHD) or heart muscle (cardiomyopathy). These can lead to life-threatening cardiac arrhythmias. If the heartbeat is too slow due to impulse or conduction disturbances, cardiac pacemakers will be implanted. High-frequency and life-threatening arrhythmias of the ventricles (ventricular tachycardia, flutter or fibrillation) cannot be treated with a pacemaker. In such cases, an implantable cardioverter-defibrillator (ICD) is used, which additionally also provides all functions of a pacemaker. The implantation of a defibrillator is appropriate if a high risk of malignant arrhythmias has been established (primary prevention). If these life-threatening cardiac arrhythmias have occurred before and are not caused by a treatable (reversible) cause, ICD implantation will be used for secondary prevention. The device can stop these life-threatening cardiac arrhythmias by delivering a shock or rapid impulse delivery (antitachycardic pacing) to prevent sudden cardiac death. Another area of application for ICD therapy is advanced heart failure (heart failure), in which both main chambers and / or different wall sections of the left ventricle no longer work synchronously. This form of cardiac insufficiency can be treated by electrical stimulation (cardiac resynchronization therapy, CRT). Since the affected patients are also at increased risk for sudden cardiac death, combination devices are usually implanted, which combine heart failure treatment by resynchronization therapy and the prevention of sudden cardiac death by life-threatening arrhythmia of the heart chambers (CRT-D device). An ICD is implanted subcutaneously or under the pectoral muscle in the area of the left collarbone. Like pacemaker implantation, ICD implantation is a routine, low-complication procedure today.


ESC CardioMed ◽  
2018 ◽  
pp. 2337-2341
Author(s):  
Jens Cosedis Nielsen ◽  
Jens Kristensen

The most common reason for sudden cardiac death is ischaemic heart disease. Patients who survive cardiac arrest are at particularly high risk of recurrent ventricular arrhythmia and sudden cardiac death, and are candidates for secondary prevention defined as ‘therapies to reduce the risk of sudden cardiac death in patients who have already experienced an aborted cardiac arrest or life-threatening arrhythmias’. The mainstay therapy for secondary prevention of sudden cardiac death is implantation of an implantable cardioverter defibrillator. Furthermore, revascularization and optimal medical therapy for heart failure and concurrent cardiovascular diseases should be ensured.


2015 ◽  
Vol 68 (10) ◽  
pp. 878-884
Author(s):  
Belén Álvarez-Álvarez ◽  
Noelia Bouzas-Cruz ◽  
Emad Abu-Assi ◽  
Sergio Raposeiras-Roubin ◽  
Andrea López-López ◽  
...  

Neurology ◽  
2020 ◽  
Vol 95 (21) ◽  
pp. e2866-e2879
Author(s):  
Simona Balestrini ◽  
Mohamad A. Mikati ◽  
Reyes Álvarez-García-Rovés ◽  
Michael Carboni ◽  
Arsen S. Hunanyan ◽  
...  

ObjectiveTo define the risks and consequences of cardiac abnormalities in ATP1A3-related syndromes.MethodsPatients meeting clinical diagnostic criteria for rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) with ATP1A3 genetic analysis and at least 1 cardiac assessment were included. We evaluated the cardiac phenotype in an Atp1a3 knock-in mouse (Mashl+/−) to determine the sequence of events in seizure-related cardiac death.ResultsNinety-eight patients with AHC, 9 with RDP, and 3 with CAPOS (63 female, mean age 17 years) were included. Resting ECG abnormalities were found in 52 of 87 (60%) with AHC, 2 of 3 (67%) with CAPOS, and 6 of 9 (67%) with RDP. Serial ECGs showed dynamic changes in 10 of 18 patients with AHC. The first Holter ECG was abnormal in 24 of 65 (37%) cases with AHC and RDP with either repolarization or conduction abnormalities. Echocardiography was normal. Cardiac intervention was required in 3 of 98 (≈3%) patients with AHC. In the mouse model, resting ECGs showed intracardiac conduction delay; during induced seizures, heart block or complete sinus arrest led to death.ConclusionsWe found increased prevalence of ECG dynamic abnormalities in all ATP1A3-related syndromes, with a risk of life-threatening cardiac rhythm abnormalities equivalent to that in established cardiac channelopathies (≈3%). Sudden cardiac death due to conduction abnormality emerged as a seizure-related outcome in murine Atp1a3-related disease. ATP1A3-related syndromes are cardiac diseases and neurologic diseases. We provide guidance to identify patients potentially at higher risk of sudden cardiac death who may benefit from insertion of a pacemaker or implantable cardioverter-defibrillator.


Sign in / Sign up

Export Citation Format

Share Document