scholarly journals Antimicrobial activity of polyhexamethylene guanidine hydrochloride derivatives against multi-resistant strains of microorganisms

Author(s):  
O. Ochirov ◽  
E. Burasova ◽  
S. Stelmakh ◽  
M. Grigor'eva ◽  
V. Okladnikova ◽  
...  

The resistance of bacteria to the disinfectants used is one of the pressing health problems that need to be addressed in order to prevent the formation and spread of resistant strains. This leads to a sharp decrease in the effectiveness of anti-epidemic measures and contributes to maintaining a high level of morbidity. In the context of the growing incidence of HAIs, their polyetiology, the large adaptive potential of opportunistic microorganisms, and the growing resistance to antimicrobial drugs, it is necessary to search for new or modify the corresponding substances of plant or synthetic origin that have antimicrobial action and are used as antimicrobial agents. One of the representatives of this class of compounds are polyguanidines, characterized by high antimicrobial activity and low toxicity. Due to the high reactivity of the guanidine group, as well as the ease of synthesis and the relative availability of raw materials, N-phenyl- and N-octyl-substituted derivatives of polyhexamethylene guanidine hydrochloride were obtained by melt polycondensation, their molecular weight characteristics were determined, and the structure was investigated by IR spectroscopy. An earlier study of the acute toxicity of polyhexamethylene guanidine hydrochloride derivatives after a single oral intake of drugs into the body of laboratory animals (white mice) made it possible to establish the following LD50 values: polyhexamethylene guanidine hydrochloride - 850.0 ± 112.02 mg / kg; N-phenyl-substituted polyhexamethylene guanidine hydrochloride - 1399.9 ± 120.51 mg / kg; N-octyl-substituted polyhexamethylene guanidine hydrochloride - 1150.0 ± 137.40 mg / kg. The obtained values, according to the tabulation of hazard classes, allow the synthesized derivatives to be classified into the fourth hazard class and open up the possibility of using disinfectants as active components. The evaluation of the antibacterial properties of the samples was carried out by the method of serial dilutions in agar on hospital strains of bacteria and fungi isolated from the biomaterial of patients of the Republican Clinical Hospital named after N.A. Semashko, according to the clinical guidelines "Laboratory diagnosis of community-acquired pneumonia" 2014; "Bacteriological analysis of urine" 2014; "Determination of the susceptibility of microorganisms to antimicrobial drugs" 2015 It was found that N-substituted derivatives exhibit a greater antimicrobial effect in comparison with an unsubstituted polymer. The most sensitive to all the drugs presented are the yeast-like fungi Candida albicans (No. 2495) (complete suppression), as well as methicillin-resistant St. aureus (no. 2544), and the substituted samples almost completely suppress its growth. The most resistant strains are P. aeruginosa (No. 2281), A. Baumannii (No. 2806) and K. Pneumoniae (No. 3023), the percentage of reduction of these bacteria under the action of substituted samples does not exceed 41%, which is explained by their multi-resistance.

2020 ◽  
Vol 5 (4) ◽  
pp. 103-107
Author(s):  
S. N. Lebedeva ◽  
O. S. Ochirov ◽  
M. N. Grigoryeva ◽  
S. D. Zhamsaranova ◽  
S. A. Stelmakh ◽  
...  

Background. Previously, we have shown that the polyhexamethylene guanidine hydrochloride hydrogel exhibits a pronounced wound healing. At the same time, no studies of the toxic effect of the hydrogel on animals have been conducted. Aim of the research. In the framework of this work, the acute toxicity of the hydrogel polyhexamethylene guanidine hydrochloride was studied in laboratory animals with intragastric administration. Materials and methods. The polyhexamethylene guanidine hydrochloride hydrogel was obtained by crosslinking the amino end groups with formaldehyde. An acute toxicity study was carried out (P 1.2.3156-13, GOST 32644-2014 and the Guidelines for conducting preclinical studies of drugs) in an experiment on outbred mice with a single addition of the test substance in different doses (1000, 3000, 5000, 8000 mg/kg) with fixing indicators (appearance, behavior, condition of the body hair coat, water and food consumption, excretion, body weight and its growth) during 14 days. After the animals were withdrawn from the experiment, autopsy, macroscopic evaluation and weighing of the internal organs were performed. The results showed that with the introduction of the test substance into the animal organism, death during the observation period (14 days) did not occur. It was not possible to determine the semi-lethal dose for the test compound. Conclusion. The conducted studies allow us to conclude that this substance is practically non-toxic and can be classified as hazard class V. Further research will be directed to the formation of hydrogel compositions with medicinal substances.


2019 ◽  
pp. 56-62 ◽  
Author(s):  
Y. V. Korotkii ◽  
N. A. Vrynchanu ◽  
M. L. Dronova ◽  
Z. S. Suvorova ◽  
O. A. Smertenko

The emergence and spread of resistant strains of pathogens as well as reduction of the efficacy of current antimicrobial agents requires the development of novel antimicrobial compounds. The aim of the present study was synthesis and evaluation of antimicrobial activity of new arylaliphatic aminopropanols. The objects of the present study were 1-[4-(1,1,3,3-tetramethylbutyl)phenoxy]-3-dialkylamino-2-propanol quaternary salts (compounds I–XIV). Compounds synthesis was carried out by heating of precursor epoxide and excessive amount of appropriate amines in isopropanole, followed by treatment with excess of alkyl halides. Methods of elemental analysis, IR- and PMR-spectroscopy were used for confirmation of chemical structure. Antimicrobial activity against Staphylococcus аureus АTCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa АТСС 27853 and Candida albicans NCTC 885/653 was determined by a broth dilution method and evaluated via minimum inhibitory concentration (MIC). Our investigation of antibacterial and antifungal activity of 1-[4-(1,1,3,3-tetra methylbutyl)phenoxy]-3-dialkylamino-2-propanol quaternary salts showed that compounds possess narrow spectrum, as well as broad spectrum action. Significant antimicrobial activity of the novel aryl aliphatic aminoalcohols indicates their potential usage as a component of new antimicrobial drugs.


Author(s):  
S. Stelmakh ◽  
M. Grigor’eva ◽  
N. Garkusheva ◽  
D. Mognonov ◽  
V. Batoev

N-phenyl- and N-octyl-substituted derivatives of polyhexamethylene guanidine hydrochloride were synthesized and their antimicrobial activity against nosocomial infections was determined.


2017 ◽  
Vol 46 (6) ◽  
pp. 458-468
Author(s):  
Wei Ding ◽  
Kaimei Peng ◽  
Tao Zou ◽  
Ruonan Wang ◽  
Jinshan Guo ◽  
...  

Purpose The purpose of this paper is to develop non-leaching and eco-friendly antimicrobial waterborne polyacrylates with excellent antibacterial properties by grafting antibacterial vinyl monomer, glycidyl methacrylate (GMA) modified polyhexamethylene guanidine hydrochloride (PHMG). Design/methodology/approach PHMG of different molecular weights were modified by GMA to synthesize antibacterial vinyl monomer, GMA-modified PHMG (GPHMG). Different content and molecular weights of GPHMG were used to synthesize antimicrobial waterborne polyacrylates through emulsion polymerization. Findings The addition of GPHMG gained by modifying PHMG showed little influence on thermal stability of the films, but decreased the glass transition temperature(Tg). Meanwhile, the tensile strength decreased, while the breaking elongation increased. The antibacterial properties of the antibacterial films with different GPHMG contents were studied, when GPHMG content was around 0.9 Wt.%, antibacterial films showed excellent antibacterial activity (antibacterial rate >= 99.99 per cent). When weight content of GPHMG in the films remained constant, antibacterial property of films increased first and then decreased with the increase of molecular weight of GPHMG. The structural antibacterial polymer film had more perdurable antibacterial activity than the blended one. Research limitations/implications The grafting efficiency of GPHMG to antimicrobial waterborne polyacrylates could be further improved. Practical implications Antimicrobial waterborne polyacrylates with excellent antibacterial properties can be used to antibacterial coating and adhesive. Originality/value The antibacterial properties of films with different molecular weight of GPHMG were studied, and the durability and stability of antibacterial properties between structural antimicrobial films and blended antimicrobial films were also investigated by ring-diffusion method.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Carmen Steluta Ciobanu ◽  
Simona Liliana Iconaru ◽  
Mariana Carmen Chifiriuc ◽  
Adrian Costescu ◽  
Philippe Le Coustumer ◽  
...  

The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation ofCa10−xAgx(PO4)6(OH)2nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.


2021 ◽  
Vol 12 (4) ◽  
pp. 15-25
Author(s):  
D. P. Gladin ◽  
A. R. Khairullina ◽  
A. M. Korolyuk ◽  
N. S. Kozlova ◽  
O. V. Ananyeva ◽  
...  

Background. Staphylocci are the leading pus-forming Gram-positive bacteria in the childrens hospitals. The prevalence of the antibiotic resistant strains among them limits therapeutic effects of infections in children. Aim. The research is aimed at characterizing the species of staphylococcus, which are isolated from the different clinical specimens of the patients at the clinics of Saint Petersburg State Pediatric Medical University in 2019, and analysis of their susceptibility to antimicrobial agents. Materials and metods. According to the clinical recommendations of 2018, susceptibility to antimicrobial drugs (AMD) was revealed in 860 strains of staphylococci determined by the disc diffusion method, which were identified by the automated analyser Vitek-2 compact. Results. Six species of staphylococci were represented at the hospital departments, among which Staphylococcus epidermidis prevailed in the departments of the neonate pathology department and intensive care units (63.0% and 46.2% respectively), Staphylococcus aureus is commonly found at the departments of surgery and the departments of the therapeutic profiles (61.7% and 46.2% respectively). More than a half of the staphylococci strains (63.0%) were resistant to at least one of the antimicrobial drugs. Vancomycin and line solid showed the highest activity to these staphylococci. High specific weight of multidrug resistant (MDR) bacteria (37.8%) and extensively drug resistant (XDR) strains of the phenotype (33.0%) was revealed. The level of antibiotic resistant strains was the highest in Staphylococcus haemolyticus (98.1%) and S. epidermidis (82.0%), while the specific weight of the resistant ones, MDR and XDR strains was extremely low among S. aureus (16.2%, 1.5% and 0.4 respectively), as well as in methicillin-resistant isolates (0.8%). Conclusions. A great variety of antibiotic resistance was revealed among the staphylococci. The prevalence of these strains in the pediatric hospitals requires constant local monitoring of the antibiotic resistant staphylococci.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anna Olborska ◽  
Anna Janas-Naze ◽  
Łukasz Kaczmarek ◽  
Tomasz Warga ◽  
Dewi Suriyani Che Halin

AbstractThe dynamic development of the world economy entails an increasing exchange of goods and population. This means that we are globally struggling with increasing levels of nosocomial infections. The increasing use of antimicrobial agents triggers the microorganisms’ immune system, which in turn contributes to the increasing amount of antibiotic-resistant microorganisms, making it necessary to control the development of unwanted microorganisms, including bacteria, especially those carried on the body and clothing.Currently, there is no unique method to combat the multiplication of microorganisms and eliminate threats to human health and life. For this reason, this article describes the possibilities of using graphene materials as a potential additive materials in fiber finishes as an antibacterial aspect in various areas of life. However, the literature does not explain the mechanisms behind the antibacterial properties of graphene, strongly limiting its textile application. The research is conducted using molecular dynamic simulations of interaction between graphene materials and murein. The obtained results suggest the electrostatic mechanism of blocking the growth and division of bacteria. Due to the physical interaction, bacterial cell becomes “trapped” without changing its growth parameters. This may lead to an increase of internal cell pressure, rupture of its wall and consequently its death.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 342 ◽  
Author(s):  
Natalya N. Besednova ◽  
Boris G. Andryukov ◽  
Tatyana S. Zaporozhets ◽  
Sergey P. Kryzhanovsky ◽  
Tatyana A. Kuznetsova ◽  
...  

The increasing drug resistance of pathogenic microorganisms raises concern worldwide and necessitates the search for new natural compounds with antibacterial properties. Marine algae are considered a natural and attractive biotechnological source of novel antibiotics. The high antimicrobial activity of their polyphenolic compounds is a promising basis for designing innovative pharmaceuticals. They can become both a serious alternative to traditional antimicrobial agents and an effective supplement to antibiotic therapy. The present review summarizes the results of numerous studies on polyphenols from algae and the range of biological activities that determine their biomedical significance. The main focus is put on a group of the polyphenolic metabolites referred to as phlorotannins and, particularly, on their structural diversity and mechanisms of antimicrobial effects. Brown algae are an almost inexhaustible resource with a high biotechnological potential for obtaining these polyfunctional compounds. An opinion is expressed that the effectiveness of the antibacterial activity of phlorotannins depends on the methods of their extraction aimed at preserving the phenolic structure. The use of modern analytical tools opens up a broad range of opportunities for studying the metabolic pathways of phlorotannins and identifying their structural and functional relationships. The high antimicrobial activity of phlorotannins against both Gram-positive and Gram-negative bacteria provides a promising framework for creating novel drugs to be used in the treatment and prevention of infectious diseases.


2020 ◽  
Vol 16 (4) ◽  
pp. 729-735
Author(s):  
Phan Thi Hoai Trinh ◽  
Tran Thi Thanh Van ◽  
Bui Minh Ly ◽  
Byeoung Kyu Choi ◽  
Hee Jae Shin ◽  
...  

The Aspergillus fungi have been an important source of natural products that are useful for exploration in medicine, agriculture and industry. In our continuous investigation to search for new antimicrobial agents from marine-derived fungi, one new phomaligol A2 (1), together with three known compounds, wasabidienone E (2), aspertetranone D (3) and mactanamide (4), were obtained from the EtOAc extract of the culture medium of the marine-derived fungus Aspergillus flocculosus (A. flocculosus) 01NT.1.1.5 isolated from the sponge Stylissa sp. at Nhatrang Bay, Vietnam. Their chemical structures were elucidated by analysis of 1D and 2D NMR and mass spectroscopic data, as well as by comparison of the corresponding data to those previously reported in the literature. Furthermore, the aim of this study was also to evaluate the antimicrobial activity of these compounds against pathogenic microbes including Escherichia coli (E. coli) ATCC 25922, Pseudomonas aeruginosa (P. aeruginosa) ATCC 27853, Staphylococcus aureus (S. aureus) ATCC 25923, Bacillus cereus (B. cereus) ATCC 11778, Streptococcus faecalis (S. faecalis) ATCC 19433, Listeria monocytogenes (L. monocytogenes) ATCC 19111, and Candida albicans (C. albicans) ATCC 10231. Among the compounds, 1-3 were inhibitory on the growth of the yeast C. albicans with minimum inhibitory concentration (MIC) value of 16 μg/mL, which was more potent than amoxicillin and cefotaxime (MIC > 256 μg/mL), antimicrobial drugs as positive references. Moreover, compounds 1-4 were also found to be active against other pathogens including P. aeruginosa and S. faecalis with MIC values of 16 μg/mL and 32 μg/mL, respectively. Compound 4 had no inhibitory activity against L. monocytogenes, whereas compounds 1-3 had ability to against this strain with MICs of 32 to 64 μg/mL. Four of tested compounds exhibited antibacterial activity against B. cereus and E. coli with MIC values of 64-128 μg/mL. This is the first report about these compounds with antimicrobial activity obtained from marine fungus A. flocculosus isolated in Vietnam.


Sign in / Sign up

Export Citation Format

Share Document