scholarly journals Aspects of Bio-Economic Revolution in Agriculture

Author(s):  
Mariana SANDU ◽  
Iudith IPATE ◽  
Oana - Ioana POP ◽  
Vergina CHIRIÅ¢ESCU ◽  
Mihaela KRUSZLICIKA

Revolution, especially in science, will always be regarded with anxiety because nothing can be more terrible than the fear of a creative mind to see, after years in which he painstakingly built and effort building your own system, placed the foundation of what was thought to be granite truth, that a heretic, came amiss, it looks like a mysterious magician, his certainty that the stone was just an illusion, a disguised form of nothingness. In saying this, to reach a truly exceptional, postulated by Romanian and universal while Nicholas Georgescu - Roegen , a vision which alone would be enough to put this so little known, however, thinker, the genius category. It is the distinction between growth and development   , two words so often confused and sometimes used in theory and practice of economic thought. It essentially says N. Georgescu - Roegen - in the footsteps of his master's from Harvard, Joseph A. Schumpeter, " growth is to produce more, develop, produce different ". Dominated by the idea of perpetual accumulation, mankind has been for centuries and longer still, in constant pursuit for the "more", without understanding the truth that, in fact, natural purpose is "to be" in a context of quality - and morally - superior. Escape the trap of this "more", with its subsidiary "faster" as a solution to living better and more complete quality is necessary and possible. The starting point in bio-economic theory of N. Georgescu - Roegen was the finding that the survival of mankind has a problem entirely different from that of other species is neither exclusively biological nor exclusively economic: is bio-economic characteristics and traits depend on many asymmetries that exist between the three sources of entropy which together form the heritage of humanity - free energy, received from the sun, on the one hand, and free energy and materials ordered structures hidden in the bowels of the earth, on the other. Systems bio-economic farming involves all elements: water, air, soil, climate, plants, animals, etc., creating natural products, whether we call organic, biological, organic, etc.. Development and use growing as scientific knowledge, research, emphasizes rationality in economic activity, thus ensuring the premise to increase economic efficiency in bio-economic conditions.

2021 ◽  
pp. 053901842199894
Author(s):  
Frank Adloff ◽  
Iris Hilbrich

Possible trajectories of sustainability are based on different concepts of nature. The article starts out from three trajectories of sustainability (modernization, transformation and control) and reconstructs one characteristic practice for each path with its specific conceptions of nature. The notion that nature provides human societies with relevant ecosystem services is typical of the path of modernization. Nature is reified and monetarized here, with regard to its utility for human societies. Practices of transformation, in contrast, emphasize the intrinsic ethical value of nature. This becomes particularly apparent in discourses on the rights of nature, whose starting point can be found in Latin American indigenous discourses, among others. Control practices such as geoengineering are based on earth-systemic conceptions of nature, in which no distinction is made between natural and social systems. The aim is to control the earth system as a whole in order for human societies to remain viable. Practices of sustainability thus show different ontological understandings of nature (dualistic or monistic) on the one hand and (implicit) ethics and sacralizations (anthropocentric or biocentric) on the other. The three reconstructed natures/cultures have different ontological and ethical affinities and conflict with each other. They are linked to very different knowledge cultures and life-worlds, which answer very differently to the question of what is of value in a society and in nature and how these values ought to be protected.


Management ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 81-103
Author(s):  
Przemysław Niewiadomski

SummarySince many researchers and managers think about the essence, creation mechanisms and limits of the manufacturing model maturity, at this point, the author raises the question related to this issue: what dimensions (descriptions and desiderata) should be considered when conceptualizing this idea? The formulated question became a starting point and a point of conducting a creative synthesis, based, on the one hand, on a detailed analysis of the problem theory, and on the other hand – on the author’s own research. The above question and belief related to the existence of economic demand for results of application nature were the main inspiration to undertake research whose main purpose is to recognize: how the maturity of the business model is understood by selected experts operating in the Polish agricultural machinery sector?


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


2019 ◽  
Vol 2 (1) ◽  
pp. 59-64
Author(s):  
Vincentius Vincentius ◽  
Evita H. Legowo ◽  
Irvan S. Kartawiria

Natural gas is a source of energy that comes from the earth which is depleting every day, an alternative source of energy is needed and one of the sources comes from biogas. There is an abundance of empty fruit bunch (EFB) that comes from palm oil plantation that can become a substrate for biogas production. A methodology of fermentation based on Verein Deutscher Ingenieure was used to utilize EFB as a substrate to produce biogas using biogas sludge and wastewater sludge as inoculum in wet fermentation process under mesophilic condition. Another optimization was done by adding a different water ratio to the inoculum mixture. In 20 days, an average of 6gr from 150gr of total EFB used in each sample was consumed by the microbes. The best result from 20 days of experiment with both biogas sludge and wastewater sludge as inoculum were the one added with 150gr of water that produced 2910ml and 2185ml of gas respectively. The highest CH 4 produced achieved from biogas sludge and wastewater sludge with an addition of 150gr of water to the inoculum were 27% and 22% CH 4 respectively. This shows that biogas sludge is better in term of volume of gas that is produced and CH percentage.


2020 ◽  
Author(s):  
Zhaoxi Sun

Host-guest binding remains a major challenge in modern computational modelling. The newest 7<sup>th</sup> statistical assessment of the modeling of proteins and ligands (SAMPL) challenge contains a new series of host-guest systems. The TrimerTrip host binds to 16 structurally diverse guests. Previously, we have successfully employed the spherical coordinates as the collective variables coupled with the enhanced sampling technique metadynamics to enhance the sampling of the binding/unbinding event, search for possible binding poses and predict the binding affinities in all three host-guest binding cases of the 6<sup>th</sup> SAMPL challenge. In this work, we employed the same protocol to investigate the TrimerTrip host in the SAMPL7 challenge. As no binding pose is provided by the SAMPL7 host, our simulations initiate from randomly selected configurations and are proceeded long enough to obtain converged free energy estimates and search for possible binding poses. The predicted binding affinities are in good agreement with the experimental reference, and the obtained binding poses serve as a nice starting point for end-point or alchemical free energy calculations.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Romdhane Ben Slama

The global warming which preoccupies humanity, is still considered to be linked to a single cause which is the emission of greenhouse gases, CO2 in particular. In this article, we try to show that, on the one hand, the greenhouse effect (the radiative imprisonment to use the scientific term) took place in conjunction with the infrared radiation emitted by the earth. The surplus of CO2 due to the combustion of fossil fuels, but also the surplus of infrared emissions from artificialized soils contribute together or each separately,  to the imbalance of the natural greenhouse effect and the trend of global warming. In addition, another actor acting directly and instantaneously on the warming of the ambient air is the heat released by fossil fuels estimated at 17415.1010 kWh / year inducing a rise in temperature of 0.122 ° C, or 12.2 ° C / century.


1989 ◽  
Vol 21 (8-9) ◽  
pp. 1057-1064 ◽  
Author(s):  
Vijay Joshi ◽  
Prasad Modak

Waste load allocation for rivers has been a topic of growing interest. Dynamic programming based algorithms are particularly attractive in this context and are widely reported in the literature. Codes developed for dynamic programming are however complex, require substantial computer resources and importantly do not allow interactions of the user. Further, there is always resistance to utilizing mathematical programming based algorithms for practical applications. There has been therefore always a gap between theory and practice in systems analysis in water quality management. This paper presents various heuristic algorithms to bridge this gap with supporting comparisons with dynamic programming based algorithms. These heuristics make a good use of the insight gained in the system's behaviour through experience, a process akin to the one adopted by field personnel and therefore can readily be understood by a user familiar with the system. Also they allow user preferences in decision making via on-line interaction. Experience has shown that these heuristics are indeed well founded and compare very favourably with the sophisticated dynamic programming algorithms. Two examples have been included which demonstrate such a success of the heuristic algorithms.


Author(s):  
Charles Dickens ◽  
Dennis Walder

Dombey and Son ... Those three words conveyed the one idea of Mr. Dombey's life. The earth was made for Dombey and Son to trade in, and the sun and moon were made to give them light.' The hopes of Mr Dombey for the future of his shipping firm are centred on his delicate son Paul, and Florence, his devoted daughter, is unloved and neglected. When the firm faces ruin, and Dombey's second marriage ends in disaster, only Florence has the strength and humanity to save her father from desolate solitude. This new edition contains Dickens's prefaces, his working plans, and all the original illustrations by ‘Phiz’. The text is that of the definitive Clarendon edition. It has been supplemented by a wide-ranging Introduction, highlighting Dickens's engagement with his times, and the touching exploration of family relationships which give the novel added depth and relevance.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1117
Author(s):  
Bin Li ◽  
Zhikang Jiang ◽  
Jie Chen

Computing the sparse fast Fourier transform (sFFT) has emerged as a critical topic for a long time because of its high efficiency and wide practicability. More than twenty different sFFT algorithms compute discrete Fourier transform (DFT) by their unique methods so far. In order to use them properly, the urgent topic of great concern is how to analyze and evaluate the performance of these algorithms in theory and practice. This paper mainly discusses the technology and performance of sFFT algorithms using the aliasing filter. In the first part, the paper introduces the three frameworks: the one-shot framework based on the compressed sensing (CS) solver, the peeling framework based on the bipartite graph and the iterative framework based on the binary tree search. Then, we obtain the conclusion of the performance of six corresponding algorithms: the sFFT-DT1.0, sFFT-DT2.0, sFFT-DT3.0, FFAST, R-FFAST, and DSFFT algorithms in theory. In the second part, we make two categories of experiments for computing the signals of different SNRs, different lengths, and different sparsities by a standard testing platform and record the run time, the percentage of the signal sampled, and the L0, L1, and L2 errors both in the exactly sparse case and the general sparse case. The results of these performance analyses are our guide to optimize these algorithms and use them selectively.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


Sign in / Sign up

Export Citation Format

Share Document