scholarly journals Determination of Water Quality Index of Jijia and Miletin Ponds

Author(s):  
Iuliana Gabriela BREABÄ‚N ◽  
Diana GHEÅ¢EU ◽  
Mădălina PAIU

The continuous monitoring of the physical, chemical and biological parameters of ponds, and its input and output waters is useful to predict, identify and assess the natural conditions for fish farming, but also be cautions to environmental damages. Water quality assessment can be defined as the evaluation of the physical, chemical and biological nature of water in relation to natural quality, human effects and intended uses. Water Quality Index reduce a great amount of parameters to a simpler expression, to enable an easier interpretation of the monitoring data. The present paper aims is to determined the water quality in five workstation in Jijia and Miletin Ponds (ROSPA0042): Jijia River; Larga Jijia Pond; Vlădeni Pond; Hălceni Dam Lake and Miletin River) with 1052 ha aquatic surfaces, after one year of monthly monitoring the aquatic ecosystems. In the study area there is no industrial source of pollution, diffuse pollution might occur by domestic waste water and agricultural landscape drainage water. Based of the physical-chemical and biological quality parameters, the WQI have been calculated, for each month and station. Summarizing the results, have been obtained the following: for Miletin River WQI varies between 64-78, at Halceni Dam range 65-82, Vladeni Pond 61-81, Larga Jijia 59-81 and Jijia River 41-61, which reveals a medium to good water quality, excepting the Jijia River with a bad to medium state. The novelty brought by using this index of water quality consists in the possibility of using it as a potential indicator of the ecological state of the aquatic ecosystems.

BIBECHANA ◽  
2013 ◽  
Vol 10 ◽  
pp. 100-107
Author(s):  
Shailendra Kumar Shah

The aimed study assesses the water quality of Mardi River applying National Sanitation Foundation (NSF) America developed index called Water Quality Index (WQI). This index is one of effective way to inform about water quality trends to the public and the policy makers for water quality management. As Mardi River is primary source of consumption to Pokhara city and Mardi Watershed entities, the water quality is important for public health and ecological aspects. The study starts with five different sampling stations having total fifteen samples along three (April, May, June) months of the year 2012 were analyzed in water laboratory. After the analysis the weight values and sub index were obtained from the NSFWQI method which results that Mardi River water has Medium degraded water quality ranges in class C and NSFWQI of Mardi river scores as 55.02 and there is high correlation between water quality parameters Nitrogen and Turbidity DOI: http://dx.doi.org/10.3126/bibechana.v10i0.7106 BIBECHANA 10 (2014) 100-107


2020 ◽  
Vol 55 (2) ◽  
pp. 119-131
Author(s):  
Hermine Betis ◽  
André St-Hilaire ◽  
Claude Fortin ◽  
Sophie Duchesne

Abstract This study aimed to adapt the Water Quality Index of the Canadian Council of Ministers of the Environment (CCME WQI) for its application to water quality assessment of drainage water and watercourses downstream of peat harvesting operations. It integrates different parameters that potentially reflect the overall water quality condition of a stream. Thus, it is calculated using multivariate water quality data and accounts for their conformity with respect to water quality guidelines. Adaptation of the index proceeded to identify, through a literature review, the physico-chemical parameters that may change due to peat harvesting. The CCME WQI was used to compare water quality of receiving watercourses to that of streams located within a 200 km radius from the study sites in three regions of Quebec. The availability of water quality data guided the selection of parameters among those identified. They are ammonia, conductivity, pH and suspended sediment concentrations. Results indicated a significant difference between WQI values of water from harvested peatlands and those of streams in two of the three regions studied. Results have also shown that it is the pH guideline that is not respected in most cases for harvested peatlands. This article has been made Open Access thanks to the kind support of CAWQ/ACQE (https://www.cawq.ca).


2017 ◽  
Vol 1 (2) ◽  
pp. 1-11
Author(s):  
Ali Nasser Hilo

The low level of water in rivers in Iraq leads to poor water quality, on that basis; we need to assess Iraq's water resources for uses of irrigation and drinking water. This study present a model accounts for ground water quality by using a water quality index (WQI) for the region defined between the city of Kut and the city of Badra in Wasit province. this study relies on a system of wells set up along the path through the Badra –Kut  and around it  up to 78 wells. The study showed poor quality of ground water in the region of study and it is unsuitability for irrigation and drinking water, as well as provided a solution to the water accumulated in the Shuwayja to reduce the bad effect on groundwater by using a system of branch and collection canals  then pumping at the effluent  of Al  Shuwayja in seasons of rainy season ..Water quality index calculated depend on the basis of various physic-chemical parameters as PH, Ec , TDS, TSS, Nacl , SO4 ,Na , and  Mg. The resultant and analytical are present with use of Arch GIS program – geostastical analysis for the water index and water quality parameters


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David de Andrade Costa ◽  
José Paulo Soares de Azevedo ◽  
Marco Aurélio dos Santos ◽  
Rafaela dos Santos Facchetti Vinhaes Assump

AbstractFifty-four water samples were collected between July and December 2019 at nine monitoring stations and fifteen parameters were analysed to provide an updated diagnosis of the Piabanha River water quality. Further, forty years of monitoring were analysed, including government data and previous research projects. A georeferenced database was also built containing water management data. The Water Quality Index from the National Sanitation Foundation (WQINSF) was calculated using two datasets and showed an improvement in overall water quality, despite still presenting systematic violations to Brazilian standards. Principal components analysis (PCA) showed the most contributing parameters to water quality and enabled its association with the main pollution sources identified in the geodatabase. PCA showed that sewage discharge is still the main pollution source. The cluster analysis (CA) made possible to recommend the monitoring network optimization, thereby enabling the expansion of the monitoring to other rivers. Finally, the diagnosis provided by this research establishes the first step towards the Framing of water resources according to their intended uses, as established by the Brazilian National Water Resources Policy.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 905
Author(s):  
Naseem Akhtar ◽  
Muhammad Izzuddin Syakir Ishak ◽  
Mardiana Idayu Ahmad ◽  
Khalid Umar ◽  
Mohamad Shaiful Md Yusuff ◽  
...  

Human activities continue to affect our water quality; it remains a major problem worldwide (particularly concerning freshwater and human consumption). A critical water quality index (WQI) method has been used to determine the overall water quality status of surface water and groundwater systems globally since the 1960s. WQI follows four steps: parameter selection, sub-indices, establishing weights, and final index aggregation, which are addressed in this review. However, the WQI method is a prolonged process and applied to specific water quality parameters, i.e., water consumption (particular area and time) and other purposes. Therefore, this review discusses the WQI method in simple steps, for water quality assessment, based on two multi-criteria decision-making (MCDM) methods: (1) analytical hierarchical process (AHP); and (2) measuring attractiveness by a categorically based evaluation technique (MACBETH). MCDM methods can facilitate easy calculations, with less effort and great accuracy. Moreover, the uncertainty and eclipsing problems are also discussed—a challenge at every step of WQI development, particularly for parameter selection and establishing weights. This review will help provide water management authorities with useful knowledge pertaining to water usage or modification of existing indicators globally, and contribute to future WQI planning and studies for drinking, irrigation, domestic, and industrial purposes.


2009 ◽  
Vol 1 (2) ◽  
pp. 275-279 ◽  
Author(s):  
D. S. Malik ◽  
Pawan Kumar ◽  
Umesh Bharti

The present study aims to identify the ground water contamination problem in villages located in the close vicinity of Gajraula industrial area at Gajraula (U.P.), India. Ground water samples were collected from different villages at the depth of 40 and 120 feet from earth’s surface layer. Analytical techniques as described in the standard methods for examination of water and waste water were adopted for physico-chemical analysis of ground water samples and the results compared with the standards given by WHO and BIS guidelines for drinking water. Water quality index was calculated for quality standard of ground water for drinking purposes. The present investigation revealed that the water quality is moderately degraded due to high range of seven water quality parameters such as Temperature (18.33-32.36 0C), conductivity (925.45-1399.59 μmho/cm), TDS (610.80-923.73 mgL-1), Alkalinity (260.17- 339.83 mgL-1), Ca-Hardness (129.68-181.17 mgL-1), Mg-Hardness (94.07-113.50 mgLÉ1) and COD (13.99-25.62 mgL-1). The water quality index (WQI) also indicated the all the water quality rating comes under the standard marginal values (45-64) i.e. water quality is frequently threatened or impaired and conditions usually depart from natural or desirable levels.


Sign in / Sign up

Export Citation Format

Share Document