scholarly journals Mitigation of Salt Stress-Induced Inhibition of Plantago crassifolia Reproductive Development by Supplemental Calcium or Magnesium

2012 ◽  
Vol 40 (2) ◽  
pp. 58 ◽  
Author(s):  
Marius N. GRIGORE ◽  
Monica BOSCAIU ◽  
Josep LLINARES ◽  
Oscar VICENTE

In Plantago crassifolia, a moderate halophyte characteristic of borders of salt marshes in the Mediterranean region, reproductivedevelopment is more sensitive to high soil salinity than vegetative growth. To investigate the possible role of calcium and magnesiumsalts in the responses of this species to salt stress, adult plants were submitted over a 2-month period to treatments with 300 mMNaCl-a concentration which affects, but does not completely inhibit seed formation in P. crassifolia-either alone or combined with lowconcentrations of CaCl2 (10 mM) or MgCl2 (20 mM). The NaCl treatment did not affect plant vegetative growth and had a stimulatingeffect on flowering. Yet almost half the spikes produced had aborted seeds, and the effect on seed number and quality-estimated bytheir mean weight and germination capacity-was obviously deleterious. Addition of calcium or magnesium chloride during the saltstresstreatment completely counteracted the negative effect of NaCl on the ‘reproductive success’ of the plants: the number, weightand germination frequency of the seeds were similar to that in the control, non-stressed plants. These results indicate that both divalentcations can suppress or mitigate the deleterious effects of salt stress. While this protective role is well established in the case of calcium,we provide here the first experimental evidence of a similar function for magnesium.

2011 ◽  
Vol 10 (10) ◽  
pp. 4349-4364 ◽  
Author(s):  
Xuegui Bai ◽  
Liming Yang ◽  
Yunqiang Yang ◽  
Parvaiz Ahmad ◽  
Yongping Yang ◽  
...  

Food Control ◽  
2014 ◽  
Vol 44 ◽  
pp. 208-213 ◽  
Author(s):  
Shanshan Zhao ◽  
Qiuxiang Zhang ◽  
Guangfei Hao ◽  
Xiaoming Liu ◽  
Jianxin Zhao ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2017
Author(s):  
Mirza Hasanuzzaman ◽  
Md. Rakib Hossain Raihan ◽  
Ebtihal Khojah ◽  
Bassem N. Samra ◽  
Masayuki Fujita ◽  
...  

We investigated the role of biochar and chitosan in mitigating salt stress in jute (Corchorus olitorius L. cv. O-9897) by exposing twenty-day-old seedlings to three doses of salt (50, 100, and 150 mM NaCl). Biochar was pre-mixed with the soil at 2.0 g kg−1 soil, and chitosan-100 was applied through irrigation at 100 mg L−1. Exposure to salt stress notably increased lipid peroxidation, hydrogen peroxide content, superoxide radical levels, electrolyte leakage, lipoxygenase activity, and methylglyoxal content, indicating oxidative damage in the jute plants. Consequently, the salt-stressed plants showed reduced growth, biomass accumulation, and disrupted water balance. A profound increase in proline content was observed in response to salt stress. Biochar and chitosan supplementation significantly mitigated the deleterious effects of salt stress in jute by stimulating both non-enzymatic (e.g., ascorbate and glutathione) and enzymatic (e.g., ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase superoxide dismutase, catalase, peroxidase, glutathione S-transferase, glutathione peroxidase) antioxidant systems and enhancing glyoxalase enzyme activities (glyoxalase I and glyoxalase II) to ameliorate reactive oxygen species damage and methylglyoxal toxicity, respectively. Biochar and chitosan supplementation increased oxidative stress tolerance and improved the growth and physiology of salt-affected jute plants, while also significantly reducing Na+ accumulation and ionic toxicity and decreasing the Na+/K+ ratio. These findings support a protective role of biochar and chitosan against salt-induced damage in jute plants.


2020 ◽  
Vol 21 (21) ◽  
pp. 8161
Author(s):  
Giada Callizaya Terceros ◽  
Francesca Resentini ◽  
Mara Cucinotta ◽  
Silvia Manrique ◽  
Lucia Colombo ◽  
...  

Fertilization and seed formation are fundamental events in the life cycle of flowering plants. The seed is a functional unit whose main purpose is to propagate the plant. The first step in seed development is the formation of male and female gametophytes and subsequent steps culminate in successful fertilization. The detailed study of this process is highly relevant because it directly impacts human needs, such as protecting biodiversity and ensuring sustainable agriculture to feed the increasing world population. Cytokinins comprise a class of phytohormones that play many important roles during plant growth and development and in recent years, the role of this class of phytohormones during reproduction has become clear. Here, we review the role of cytokinins during ovule, pollen and seed formation at the genetic and molecular levels. The expansion of knowledge concerning the molecular mechanisms that control plant reproduction is extremely important to optimise seed production.


2021 ◽  
Vol 11 (19) ◽  
pp. 8810
Author(s):  
Celina Kruszniewska-Rajs ◽  
Agnieszka Synowiec-Wojtarowicz ◽  
Joanna Gola ◽  
Magdalena Kimsa-Dudek

Fluoride can weaken the protective role of melatonin in reducing cellular damage. A static magnetic field is a physical factor that can counteract the negative effect of fluoride. Hence, the main objective of the study was to analyze the transcriptional activity of the genes that are associated with the activity of melatonin in human skin fibroblasts that have been co-exposed to fluoride and a moderate-strength static magnetic field. The expression of the melatonin-associated genes in human fibroblasts that had simultaneously been exposed to F− and a static magnetic field was determined using an oligonucleotide microarray and RT-qPCR techniques. The concentration of oxidative damage markers was also measured. In NaF and static magnetic field-treated cells, there was a tendency to compensate for the expression of the differentiating genes (IL27RA, NR1D1, RRP7A, YIPF1, HIST1H2BD) that had been modified by the presence of fluoride. It has been also shown that the oxidative damage marker concentration was statistically lower in the cells that had simultaneously been exposed to fluoride and a static magnetic field compared to the F-treated cells. In conclusion, the protective role of a moderate-strength static magnetic field on human dermal fibroblasts that had been exposed to fluoride was demonstrated, and its mechanism of action is associated with the melatonin-dependent pathways.


2021 ◽  
Vol 75 (1) ◽  
pp. 889-895
Author(s):  
Małgorzata Lewicka ◽  
Magdalena Zawadzka ◽  
Gabriela Henrykowska ◽  
Maciej Rutkowski ◽  
Andrzej Buczyński

Abstract Objectives The article presents the results of an in vitro study aimed at identifying changes in parameters of oxidative stress – concentration of malondialdehyde (MDA), enzymatic activity of superoxide dismutase (SOD-1) and protective antioxidant role of melatonin (MLT) during the exposure of blood platelets to electromagnetic radiation (EMR) emitted by monitors. Methods Platelets were exposed to an EMR for 30- and 60 min. generated by monitors (1 kHz frequency, 220 V/m intensity). In each sample the level of SOD-1 activity and concentration of MDA were determined. Results The MDA concentration increased significantly after 30-and 60-min. irradiation, as compared to control values (2.53 vs 1.36; 3.64 vs 1.36 nmol/109 blood platelets) and after the addition of MLT it decreased (2.53 vs 1.55; 3.64 vs 1.12 nmol/109 blood platelets). The activity of SOD-1 increased significantly compared to control values after 30 min. and 60 min. of exposure to EMR (1.97vs 0.75; 2.08 vs 0.75 U/g of protein), and significantly decreased after the addition of MLT only in samples exposed for 60 min. (2.08 vs 0.95 U/g of protein). Discussion The results demonstrated the possibly negative effect of EMR on oxygen metabolism of blood platelets and indicated a possible protective role of melatonin in this process.


2008 ◽  
Vol 31 (10) ◽  
pp. 1820-1831 ◽  
Author(s):  
K. Shi ◽  
Y. Y. Huang ◽  
X. J. Xia ◽  
Y. L. Zhang ◽  
Y. H. Zhou ◽  
...  

2007 ◽  
Vol 33 (4) ◽  
pp. 233-235 ◽  
Author(s):  
O. I. Yakhin ◽  
A. A. Lubyanov ◽  
I. A. Yakhin ◽  
V. A. Vakhitov

Sign in / Sign up

Export Citation Format

Share Document