scholarly journals Phytochemical and Antioxidant Diversity in Fruits of Currant (Ribes spp.)

2018 ◽  
Vol 46 (2) ◽  
pp. 381-387 ◽  
Author(s):  
Nilda ERSOY ◽  
Muhammed KUPE ◽  
Muttalip GUNDOGDU ◽  
Gulce ILHAN ◽  
Sezai ERCISLI

Currant successfully grown in a wide area in Turkey due to its environmental plasticity. The aim of this study is to determine variations in phytochemical contents and antioxidant capacity from certain currant cultivars and genotypes commercially grown in Turkey. Fruit samples taken from two red currant cultivars (‘Red Lake’, ‘Rovada’) and four black (‘S. Nigrum’, ‘Tokat 2’, ‘Tokat 3’ and ‘Tokat 4’) and the genotype 1310 (red currant) were subjected to analysis for phenolic compounds (protocatechuic, vanillic acid, ellagic acid, rutin, quercetin, gallic acid, catechin, chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid, o-coumaric acid, phloridzin and ferulic acid), organic acids (citric acid, tartaric acid, malic acid, succinic acid, and fumaric acid), vitamin C, antioxidant capacity (Trolox equivalent antioxidant capacity [TEAC] assay) and sugars (glucose, fructose and sucrose). Results showed that phytochemical contents and antioxidant capacities statistically varied among currant cultivars and genotype (p<0.05). Caffeic acid was determined only in the genotype 1301. Ellagic acid (1.680 mg/100 g), gallic acid (2.022 mg/100 g), rutin (4.649 mg/100 g), catechin (8.005 mg/100 g) and chlorogenic acid (2.721 mg/100 g) were found the highest values in ‘Tokat 3’, ‘Red Lake’, ‘Tokat 3’, 1310 and ‘S. Nigrum’, respectively. Citric acid, fumaric acid, and malic acid were dominant among organic acids for all cultivars and the genotype 1310. Contents of glucose and fructose among sugars were measured to be higher than content of sucrose for all cultivars and the genotype. The highest antioxidant capacity was detected in cultivar of ‘Rovada’ and the genotype 1310.

2016 ◽  
Vol 96 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Mustafa Kenan Gecer ◽  
Meleksen Akin ◽  
Muttalip Gundogdu ◽  
Sadiye Peral Eyduran ◽  
Sezai Ercisli ◽  
...  

Mulberries, Morus spp., grow in different growing regions of Turkey with a high diversity providing an opportunity to select superior accessions. The goal of the study was to determine the differences in phytochemical components and horticultural characteristics between white and black mulberry accessions in the Igdir province. Fruits of black and white mulberries collected from Igdir province were assayed for various horticultural characteristics including berry width, berry length, berry weight, and berry peduncle length. Samples were also assayed for vitamin C, organic acids (citric, tartaric, malic, succinic, and fumaric), sugars (glucose and fructose), phenolic acids (catechin, rutin, quercetin, chlorogenic, ferulic, o-coumaric, p-coumaric, caffeic, syringic, vanillic, and gallic acids), and antioxidant capacity [Trolox equivalent antioxidant capacity (TEAC) assay]. Differences (P < 0.05) were noted between accessions in berry length and berry weight. Malic acid was found to be the predominant organic acid regardless of species. Rutin (for black mulberry) and chlorogenic acid (for white mulberry) were the predominant phenolic acids. Black mulberry had higher glucose and fructose content than white mulberry. Analysis showed that black mulberry had higher content of tartaric acid, malic acid, TEAC, fructose, glucose, catechin, rutin, quercetin, o-coumaric acid, and caffeic acid compared with white mulberry (P < 0.01); however, white mulberry had higher content of succinic acid, vitamin C, chlorogenic acid, ferulic acid, p-coumaric acid, syringic acid, and gallic acid (P < 0.01). Our results provide a reference for further studies of mulberry fruits in detection of organic acids, sugars, antioxidant capacity, and phenolic compounds. Also, it is clear that we need standardized testing, extraction, and analysis protocols to compare genotypes grown in different countries.


Author(s):  
Merve Balaban ◽  
Cansel Koc ◽  
Taner Sar ◽  
Meltem Yesilcimen Akbas

In this work, seven different extracts from pomegranate (Punica granatum L., cv. Hicaz nar) peel were prepared by using different solvents (ethanol, methanol, either alone or in combination with acid, acetone and water). The phenolics (punicalagins and ellagic acid), organic acids (citric acid and malic acid) and sugars of pomegranate peel extracts were determined. The highest amounts of punicalagins and ellagic acid were detected by ethanol-acid extract as 13.86% and 17.19% (w/v) respectively, whereas the lowest levels were obtained with acetone and water extracts. Moreover, the methanol-acid (3.19% malic acid) and ethanol-acid (1.13% citric acid) extracts contained the highest levels of organic acids. The antimicrobial activities of extracts were investigated by agar well diffusion method. Methanol-acid and ethanol-acid extracts exhibited the highest antimicrobial effects on all tested microorganisms, giving inhibition zones ranging in size from 17 to 36 mm. Although similar antimicrobial activities were observed by ethanol, methanol, and acetone extracts (up to 24 mm), the lowest antimicrobial activities were attained by water extract (0-15 mm). All extracts were generally more effective against Gram-positive bacteria: Enterococcus facealis, Bacillus subtilis, Bacillus cereus than Gram-negative ones: Escherichia coli and Enterobacter aerogenes. It was shown that extracts from pomegranate peels represent a good source of bioactive compounds.


1994 ◽  
Vol 77 (4) ◽  
pp. 1056-1059 ◽  
Author(s):  
M L Vazquez Oderiz ◽  
M E Vazquez Blanco ◽  
J Lopez Hernandez ◽  
J Simal Lozano ◽  
M A Romero Rodriguez

Abstract A method is described for determining and quantitating organic acids (oxalic, malic, citric, and fumaric) and vitamin C by liquid chromatography with a UV–visible detector that allows simultaneous monitoring at 2 wavelengths. The method was applied to samples of green beans (Phaseolus vulgaris L.). Recoveries were 97.8% for oxalic acid, 98.9% for malic acid, 98.7% for citric acid, 99.2% for fumaric acid, and 98.5% for vitamin C. Method precisions (coefficients of variation) were 1.7% for oxalic acid, 0.8% for malic acid, 0.9% for citric acid, 1.5% for fumaric acid, and 1.2% for vitamin C. Measurement precisions (coefficients of variation) were 1.32% for oxalic acid, 0.33% for malic acid, 0.62% for citric acid, 1.01 % for fumaric acid, and 0.39% for vitamin C. Limits of detection were 0.025 mg/mL for oxalic acid, 0.022 mg/mL for malic acid, 0.024 mg/mL for citric acid, 1.0 × 10−4 mg/mL for fumaric acid, and 2.7 × 10−4 mg/mL for vitamin C.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xilan Tang ◽  
Jianxun Liu ◽  
Wei Dong ◽  
Peng Li ◽  
Lei Li ◽  
...  

Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components ofFructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. Inin vivorat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation.In vitroexperiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient ofFructus Choerospondiatisresponsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1920
Author(s):  
Yogesh Sutar ◽  
Tejabhiram Yadavalli ◽  
Sagar Kumar Paul ◽  
Sudipta Mallick ◽  
Raghuram Koganti ◽  
...  

BX795 is a TANK binding kinase-1 inhibitor that has shown excellent therapeutic activity in murine models of genital and ocular herpes infections on topical delivery. Currently, only the BX795 free base and its hydrochloride salt are available commercially. Here, we evaluate the ability of various organic acids suitable for vaginal and/or ocular delivery to form BX795 salts/cocrystals/co-amorphous systems with the aim of facilitating pharmaceutical development of BX795. We characterized BX795-organic acid coevaporates using powder X-ray diffractometry, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, 1H-nuclear magnetic resonance spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the interaction between BX795 and various organic acids such as taurine, maleic acid, fumaric acid, tartaric acid, and citric acid. Furthermore, using human corneal epithelial cells and HeLa cells, we evaluated BX795-organic acid coevaporates for in vitro cytocompatibility and in vitro antiviral activity against herpes simplex virus-type 1 (HSV-1) and type-2 (HSV-2). Our studies indicate that BX795 forms co-amorphous systems with tartaric acid and citric acid. Interestingly, the association of organic acids with BX795 improved its thermal stability. Our in vitro cytocompatibility and in vitro antiviral studies to screen suitable BX795-organic acid coevaporates for further development show that all BX795-organic acid systems, at a concentration equivalent to 10 µM BX795, retained antiviral activity against HSV-1 and HSV-2 but showed differential cytocompatibility. Further, dose-dependent in vitro cytocompatibility and antiviral activity studies on the BX795-fumaric acid system, BX795-tartaric acid co-amorphous system, and BX795-citric acid co-amorphous system show similar antiviral activity against HSV-1 and HSV-2 compared to BX795, whereas only the BX795-citric acid co-amorphous system showed higher in vitro cytocompatibility compared to BX795.


2019 ◽  
Vol 47 (4) ◽  
pp. 1094-1099
Author(s):  
Aysen KOC ◽  
Hakan KELES ◽  
Sezai ERCISLI

In this study, fruits from seed propagated walnut (Juglans regia L.) trees were collected two consecutive years in harvest seasons in Yozgat province in Turkey.  Considering two years results, promising five genotypes were determined as cultivar candidate. In the promising genotypes, nut weight ranged from 12.55 (Y11) to 15.08 g (Y15), kernel weight ranged from 5.23 (Y11) to 7.34 g (Y15) and kernel ratio varied between 41.67 (Y11) to 50.84% (Y1), respectively. Linoleic acid was the only polyunsaturated fatty acids and oleic, palmitoleic and gondoic acids determined as major monounsaturated acids ranged from 30.36 to 48.43%, 0.05 to 0.14% and 0.22 to 0.29%, respectively. Propylparaben was the major phenolic acid among the determined phenolic acids in fruits of all five promising genotypes and Y16 had the highest amount of propylparaben (128.08 mg per kg) in its kernel. Malic and tartaric acid were the major organic acids in walnut kernels ranged from 47.88 to 78.51 mg per 100 g and 30.27 to 49.60 mg per 100 g, respectively. L-ascorbic acid was the another organic acids in walnut kernels ranged from 10.71 to 19.71 mg per 100 g. Citric acid was non-determined in kernels of Y1, Y14 and Y15 but determined at kernels of Y11 and Y16 as 4.51 and 7.55 mg per 100 g, respectively. It was determined that the oxalic, malonic, succinic, maleic and fumaric acid contents varied between 8.39-12.08 mg per 100 g, 6.02-9.19 mg per 100 g, 2.86-5.32 mg per 100 g, 0.26-3.00 mg per 100 g and 0.26-0.58 mg per 100 g, respectively.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2016 ◽  
Vol 79 (12) ◽  
pp. 2184-2189 ◽  
Author(s):  
MYEONGGEUN OH ◽  
JOONGJAE LEE ◽  
YOONHWA JEONG ◽  
MISOOK KIM

ABSTRACT We investigated the synergistic effects of lysozyme combined with organic acids to inhibit the growth of Listeria monocytogenes. The antilisterial effects of the combination of lysozyme and acetic acid, citric acid, lactic acid, malic acid, or succinic acid were evaluated using the checkerboard method and time-kill assay. The MIC was 25,000 mg/liter for lysozyme, 625 mg/liter for acetic acid, and 1,250 mg/liter for the other acids. The MBC was 10,000 mg/liter for all of the tested organic acids. The combination of lysozyme and each organic acid showed synergistic effects via the checkerboard method; however, the time-kill assay showed synergistic effects for only three combinations of 1,250 mg/liter lysozyme with succinic acid (312 and 625 mg/liter) or malic acid (625 mg/liter). The results of this study indicate that the combination of lysozyme and malic acid or succinic acid can be effectively used as a food preservative to control L. monocytogenes.


1982 ◽  
Vol 65 (1) ◽  
pp. 126-131 ◽  
Author(s):  
Felix G R Reyes ◽  
Ronald E Wrolstad ◽  
Christopher J Cornwell

Abstract Free sugars and major nonvolatile organic acids present in strawberries at 3 degrees of ripeness were determined by 3 analytical methods: enzymic, gasliquid chromatographic, and high performance liquid chromatographic. Results showed that variability in sugar composition due to both degree of ripeness and method of analysis was greater for sucrose than for glucose and fructose. Sucrose was almost completely hydrolyzed in the overripe fruit. Acid results showed that there was little variation in citric acid levels due to ripeness or method of analysis; malic acid, however, decreased greatly in overripe fruit. Malic acid also showed high variability due to method of analysis. The glucose:fructose ratios for the underripe, ripe, and overripe fruit were 0.86,0.92, and 0.60, respectively. The citric:malic ratios were 1.58, 2.39, and 14.86 for the underripe, ripe, and overripe stages, respectively.


1999 ◽  
Vol 62 (5) ◽  
pp. 451-455 ◽  
Author(s):  
JEE-HOON RYU ◽  
YUN DENG ◽  
LARRY R. BEUCHAT

A study was done to determine if various organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted Escherichia coli O157:H7 cells. E. coli O157:H7 strain E0139, isolated from venison jerky, was grown in tryptic soy broth (TSB) and in TSB supplemented with 1% glucose (TSBG) for 18 h at 37°C, then plated on tryptic soy agar (TSA) acidified with malic, citric, lactic, or acetic acid at pH 5.4, 5.1, 4.8, 4.5, 4.2, and 3.9. Regardless of whether cells were grown in TSB or TSBG, visible colonies were not formed when plated on TSA acidified with acetic, lactic, malic, or citric acids at pH values of ≤5.4, ≤4.5, ≤4.2, or ≤4.2, respectively. Cells not adapted to reduced pH did not form colonies on TSA acidified with lactic acid (pH 3.9) or acetic acid (pH 3.9 and 4.2); however, a portion of acid-adapted cells remained viable on TSA containing lactic acid (pH 3.9) or acetic acid (pH 4.2) and could be recovered in TSB. Inactivation of acid-adapted cells was less than that of unadapted cells in TSB acidified at pH 3.9 with citric, lactic, or acetic acid and at pH 3.4 with malic acid. Significantly (P ≤ 0.05) higher numbers of acid-adapted cells, compared with unadapted cells, were detected 12 h after inoculation of TSB acidified with acetic acid at pH 3.9; in TSB containing lactic acid (pH 3.9), the number of acid-adapted cells was higher than the number of unadapted cells after 5 h. In TSB acidified at pH 3.9 with citric acid or pH 3.4 with malic acid, significantly higher numbers of acid-adapted cells survived. This study shows that organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted E. coli O157:H7 cells, and acid-adapted cells are more tolerant than unadapted cells when subsequently exposed to reduced pH caused by these acids.


Sign in / Sign up

Export Citation Format

Share Document