scholarly journals Oxidative Stress Induction by Lead in Leaves of Radish (Raphanus sativus) Seedlings

2011 ◽  
Vol 3 (4) ◽  
pp. 93-99 ◽  
Author(s):  
Nadjet BITEUR ◽  
Abdelkader AOUES ◽  
Omar KHAROUBI ◽  
Miloud SLIMANI

Oxidative stress was induced by lead acetate (Pb) in Raphanus sativus seedlings grown in a hydroponic system using sand as substrate. Thirty day old acclimated seeds were treated for 7 days with five Pb levels (0 as control, 100, 200, 500 and 1000 mg l-1). Parameters such as growth, oxidative damage markers (lipid peroxidation, protein oxidation and hydrogen peroxide contents) and enzymatic activities of catalase (CAT) and peroxidase (POD) were investigated. Lead concentration in plant tissues increased with increasing of Pb levels. Shoot fresh weight, chlorophyll and carotenoid concentration were significantly decreased at 100 mg l-1 Pb. Lipid peroxidation, protein oxidation and H2O2 levels were increased at 500 and 1000 mg l-1 Pb compared to control treatment, in shoots. Peroxidase activity showed a straight correlation with H2O2 concentration, whereas CAT activity decreased only in shoots. These changes in enzymatic and non-enzymatic antioxidants showed that the Pb exposition had a significant disturbance on Raphanus sativus plantlets and affect the biochemical and physiological processes.

2015 ◽  
Vol 93 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Chandrabose Sureka ◽  
Thiyagarajan Ramesh ◽  
Vavamohaideen Hazeena Begum

The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190–220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.


Antioxidants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 70 ◽  
Author(s):  
Cuauhtémoc Sandoval-Salazar ◽  
Cecilia Oviedo-Solís ◽  
Edmundo Lozoya-Gloria ◽  
Herlinda Aguilar-Zavala ◽  
Martha Solís-Ortiz ◽  
...  

It has been proposed that there is a correlation between high-fat diet (HFD), oxidative stress and decreased γ-aminobutyric acid (GABA) levels, but this has not been thoroughly demonstrated. In the present study, we determined the effects of strawberry extract intake on the oxidative stress and GABA levels in the frontal cortex (FC) of obese rats. We observed that an HFD increased lipid and protein oxidation, and decreased GABA levels. Moreover, UV-irradiated strawberry extract (UViSE) decreased lipid peroxidation but not protein oxidation, whereas non-irradiated strawberry extract (NSE) reduced protein oxidation but not lipid peroxidation. Interestingly, NSE increased GABA concentration, whereas UViSE was not as effective. In conclusion, our results suggest that an HFD increases oxidative damage in the FC, whereas strawberry extract intake may ameliorate the disturbances associated with HFD-induced oxidative damage.


2019 ◽  
Vol 51 (06) ◽  
pp. 389-395 ◽  
Author(s):  
Gregorio Caimi ◽  
Baldassare Canino ◽  
Maria Montana ◽  
Caterina Urso ◽  
Vincenzo Calandrino ◽  
...  

AbstractThe association between obesity and cardiovascular diseases has a multifactorial pathogenesis, including the synthesis of inflammatory molecules, the increase in oxidative stress and the dysregulation of the matrix metalloprotease (MMP) concentration and activity. In a group of adults with obesity, divided in 2 subgroups according to the body mass index (BMI), we examined lipid peroxidation, expressed as thiobarbituric acid-reactive substances (TBARS), protein oxidation, expressed as protein carbonyl groups (PCs), plasma gelatinases (MMP-2 and MMP-9), and their tissue inhibitors (TIMP-1 and TIMP-2). In the whole group, as well as in the 2 subgroups (with BMI 30–35 or BMI>35) of obese subjects, we observed an increase in TBARS, PCs, MMP-2, and MMP-9, and also TIMP-1 and TIMP-2 in comparison with the control group. A positive correlation between TBARS and PCs emerged in obese subjects and persisted after dividing obese subjects according to BMI. The correlation between MMP-2 and TIMP-2 was not statistically significant, while a significant correlation was present between MMP-9 and TIMP-1. The correlations between the markers of oxidative stress (TBARS and PCs) and those of the MMP/TIMP profile indicated a more marked influence of protein oxidation on MMPs and TIMPs in comparison with TBARS. The innovative aspect of our study was the simultaneous evaluation of oxidative stress markers and MMP/TIMP profile in adult obese subjects. We observed significant alterations and correlations that may negatively influence the clinical course of the disease.


1999 ◽  
Vol 106 (2-3) ◽  
pp. 209-214 ◽  
Author(s):  
Gladys Tapia ◽  
Pamela Cornejo ◽  
Virginia Fernández ◽  
Luis A. Videla

2009 ◽  
Vol 123 (9) ◽  
pp. 957-963 ◽  
Author(s):  
İ Aladag ◽  
A Eyibilen ◽  
M Güven ◽  
Ö Atış ◽  
Ü Erkokmaz

AbstractObjective:Although many clinical investigations have found a relationship between hearing loss and diabetes mellitus, the pathophysiology of this effect remains controversial. To date, the mechanisms of hearing loss in diabetic patients have been explained in terms of microangiopathy, neuropathy and encephalopathy. However, many reports indicate that some diabetic complications are associated with oxidative stress related to the diabetes itself. In the present study, we hypothesised that oxidative stress may be a cause of hearing loss in diabetic patients.Methods:The study group comprised non-insulin dependent diabetic patients with no signs of microangiopathy or peripheral neuropathy. The control group comprised sex-, age- and body weight matched, non-diabetic subjects. Auditory function was evaluated using pure tone audiometry and tympanometry. Subjects with normal hearing and sensorineural hearing loss were included in the study, whereas subjects with conductive hearing loss were excluded. Both the study group (n = 63) and the control group (n = 37) were divided into subgroups based on the presence and absence of hearing loss. Oxidative stress was evaluated by measuring serum indicators of protein oxidation and lipid peroxidation, serum levels of nitric oxide and various non-enzymatic antioxidants, and the activity of various enzymatic antioxidants.Results:The non-insulin dependent diabetic patients had significantly higher serum levels of protein oxidation products, nitric oxide, enzymatic antioxidant activity (i.e. glutathione peroxidase and superoxide dismutase), compared with the control group (p < 0.05). When we compared the groups in relation to the presence of hearing loss, the nitric oxide level was significantly increased in the diabetic group with good hearing, compared with diabetic patients with hearing loss (p = 0.014). In the diabetic group, a clear, negative correlation was observed between serum levels of nitric oxide and vitamins C and E, and hearing impairment (r = −0.395,r = −0.318,r = −0.500, respectively). There was also a positive correlation between serum vitamin C concentrations and hearing levels in the control group (r = 0.417).Conclusion:These results suggest that oxidative stress may play an important role in hearing impairment in diabetic patients. In this process, increased protein oxidation appears to be more important than lipid peroxidation. Nitric oxide may have a protective effect on hearing, as may some nonenzymatic antioxidants such as vitamin C and E.


2012 ◽  
Vol 137 (6) ◽  
pp. 473-481 ◽  
Author(s):  
Sukhvinder Pal Singh ◽  
Zora Singh

Chilling injury (CI) is a major postharvest constraint in the long-term cold storage, transportation, and distribution of japanese plums (Prunus salicina). The aim of the work was to explain the development and severity of CI in japanese plums based on the oxidative stress theory following time course analysis of enzymatic and non-enzymatic antioxidants. Changes in membrane lipid peroxidation and enzymatic and non-enzymatic antioxidative systems in japanese plum cultivar Blackamber were determined at weekly intervals during 5 weeks of cold storage at 0 °C and at 2-day intervals during poststorage simulated shelf conditions (21 ± 1 °C) for 8 days after each week of cold storage. Fruit respiration and ethylene production rates showed typical climacteric patterns after removal from cold storage and these rates were relatively high after 4 and 5 weeks compared with 0 to 3 weeks of storage. The CI symptoms first appeared after 3 weeks of cold storage after fruit had been transferred to simulated shelf conditions. The incidence and severity of CI intensified with increasing storage duration. The extent of lipid peroxidation indicated by concentration of thiobarbituric acid-reactive substances and membrane damage manifested as electrolyte leakage increased with increasing duration of storage and subsequent simulated shelf conditions. Membrane lipid peroxidation exhibited positive correlation with the severity of CI. Activities of primary antioxidant enzymes and the enzymes involved in the ascorbate–glutathione cycle were determined to explain the levels of reduced and oxidized forms of cellular redox buffers, ascorbate and glutathione. In response to chilling stress, antioxidative protection systems operated efficiently during the first 3 weeks of cold storage, but extended storage resulted in loss of ability to ameliorate increasing levels of oxidative stress. In this study, the comprehensive analyses of various metabolites and antioxidative systems explain the series of events involved in development of CI in japanese plums in support of the oxidative stress theory.


2021 ◽  
Author(s):  
Jagjeet Singh ◽  
Annu Phogat ◽  
Chandra Prakash ◽  
Vijay Kumar ◽  
Vinay Malik

Abstract The present study evaluated the effect of N-acetylcysteine (NAC) against sub chronic monocrotophos (MCP) exposure induced oxidative stress in rat liver. Albino wistar rats were divided into control, NAC treated, MCP and MCP treated groups. An oral dose of MCP (0.9 mg/kg b.wt) and NAC (200 mg/kg b.wt) was administered for 28 days. We observed high oxidative stress generation on MCP exposure in liver tissue as evident by significant increase in lipid peroxidation, protein oxidation and decreased glutathione content followed by altered activities of superoxide dismutase, catalase and acetylcholinesterase. Sub chronic MCP exposure caused an array of cellular and structural alternations in lipids and proteins of liver tissue as depicted by the FTIR, histopathological and electron microscopic analysis. N-acetylcysteine attenuated the loss of glutathione and prevented lipid peroxidation and protein oxidation. Pre-treatment of NAC also restored histological and ultra space structural alternations. So NAC protects oxidative stress and tissue damage induced by sub chronic MCP exposure in rat liver; suggesting the therapeutic and antioxidant potential of NAC.


Author(s):  
I Akinlua

Hypertension or high blood pressure and its complications is a major cause of morbidity and mortality all over the world. The development of hypertension has been linked to atherosclerosis formation and progression which in turn has its root in free radicals induced oxidative stress and antioxidants present. This work was undertaken to determine plasma activity of enzymatic antioxidants and lipid peroxidation level in patients with moderate and severe hypertension to establish a possible association between these parameters and progression of hypertension. A total number of 60 hypertensive patients that are freshly diagnosed made up of 30 moderate and 30 severe hypertensive patients with 30 relatively healthy subjects as control recruited from Wesley Guide Hospital, Ilesa, Osun State Nigeria was used for this study. Plasma activity of catalase, superoxide dismutase, glutathione peroxidase and plasma level of malondialdehyde (MDA) was determined in both patients and control subjects using standard methodologies. The results obtained was subjected to statistical analysis using two-way analysis of variance (ANOVA) and post-hoc Duncan test with (p<0.05) considered to be significant. The result of this study revealed a significant decrease (P<0.05) in the activity of the antioxidant enzymes considered. The plasma MDA in all the patients was raised but not statistically significant p<0.05 from result obtained for the control subjects. Progressive decrease in the activity of antioxidant enzymes in these patients and a possible oxidative stress as hypertension progresses as shown in this study could be a pointer to the fact that these molecules might influence greatly the progression of hypertension.


Sign in / Sign up

Export Citation Format

Share Document