scholarly journals Effects of Transdermal Methylsulfonylmethane on Muscle Damage and Recovery Following Eccentric Exercise

2021 ◽  
Vol 30 (2) ◽  
pp. 158-166
Author(s):  
Hyeon-deok Jo ◽  
Choun-sub Kim ◽  
Maeng-kyu Kim

PURPOSE:The present study aimed to investigate the effects of transdermal application of methylsulfonylmethane (MSM) on muscle damage and recovery following eccentric exercise in young men.METHODS: Eleven college-aged men without any cardiovascular or orthopedic disorders underwent two sessions consisting of a control session (CS) and an experimental session (ES) in a random order with at least 2 weeks of wash-out between the sessions. The participants performed 30 maximal eccentric exercises involving their non-dominant elbow flexors in each session. Circumference, muscle soreness, range of motion, maximal voluntary isometric contraction (MVIC), and muscular echo intensity (EI) were measured to evaluate the changes in the level of exercise-induced muscle damage (EIMD). All measurements were performed at 24, 48, 72, and 96 hours after exercise and also immediately before and after exercise.RESULTS:Transdermal application of MSM in ES attenuated muscle swelling and decreased MVIC after eccentric exercise when compared with CS. Muscle soreness and EI tended to increase less rapidly and decrease more rapidly in ES than in CS.CONCLUSIONS: Transdermal application of MSM may induce relatively positive effects on EIMD and recovery following eccentric exercise when compared with the treatment that has been widely used previously.

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2850
Author(s):  
Ilenia Bazzucchi ◽  
Federica Patrizio ◽  
Roberta Ceci ◽  
Guglielmo Duranti ◽  
Stefania Sabatini ◽  
...  

This study was aimed at investigating whether quercetin (Q) may improve the recovery of neuromuscular function and biochemical parameters in the 7 days following an eccentric exercise-induced muscle damage (EEIMD). Sixteen men (25.9 ± 3.3 y) ingested Q (1000 mg/day) or placebo (PLA) for 14 days following a double-blind crossover study design. A neuromuscular (NM) test was performed pre–post, 24 h, 48 h, 72 h, 96 h and 7 days after an intense eccentric exercise. The force–velocity relationship of the elbow flexor muscles and their maximal voluntary isometric contraction (MVIC) were recorded simultaneously to the electromyographic signals (EMG). Pain, joint angle, arm circumference, plasma creatine kinase (CK) and lactate-dehydrogenase (LDH) were also assessed. The results showed that Q supplementation significantly attenuated the strength loss compared to PLA. During the recovery, force–velocity relationship and mean fibers conduction velocity (MFCV) persisted significantly less when participants consumed PLA rather than Q, especially at the highest angular velocities (p < 0.02). A greater increase in biomarkers of damage was also evident in PLA with respect to Q. Q supplementation for 14 days seems able to ameliorate the recovery of eccentric exercise-induced weakness, neuromuscular function impairment and biochemical parameters increase probably due to its strong anti-inflammatory and antioxidant action.


2007 ◽  
Vol 21 (3) ◽  
pp. 661-667 ◽  
Author(s):  
TRAVIS W. BECK ◽  
TERRY J. HOUSH ◽  
GLEN O. JOHNSON ◽  
RICHARD J. SCHMIDT ◽  
DONA J. HOUSH ◽  
...  

Sports ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 24
Author(s):  
Themistoklis Tsatalas ◽  
Evangeli Karampina ◽  
Minas A. Mina ◽  
Dimitrios A. Patikas ◽  
Vasiliki C. Laschou ◽  
...  

Limited research exists in the literature regarding the biomechanics of the jump-landing sequence in individuals that experience symptoms of muscle damage. The present study investigated the effects of knee localized muscle damage on sagittal plane landing biomechanics during drop vertical jump (DVJ). Thirteen regional level athletes performed five sets of 15 maximal eccentric voluntary contractions of the knee extensors of both legs at 60°/s. Pelvic and lower body kinematics and kinetics were measured pre- and 48 h post-eccentric exercise. The examination of muscle damage indicators included isometric torque, muscle soreness, and serum creatine kinase (CK) activity. The results revealed that all indicators changed significantly following eccentric exercise (p < 0.05). Peak knee and hip joint flexion as well as peak anterior pelvic tilt significantly increased, whereas vertical ground reaction force (GRF), internal knee extension moment, and knee joint stiffness significantly decreased during landing (p < 0.05). Therefore, the participants displayed a softer landing pattern following knee-localized eccentric exercise while being in a muscle-damaged state. This observation provides new insights on how the DVJ landing kinematics and kinetics alter to compensate the impaired function of the knee extensors following exercise-induced muscle damage (EIMD) and residual muscle soreness 48 h post-exercise.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yvoni Kyriakidou ◽  
Isabella Cooper ◽  
Igor Kraev ◽  
Sigrun Lange ◽  
Bradley T. Elliott

Background: Exercise-induced muscle damage (EIMD) results in transient muscle inflammation, strength loss, and muscle soreness and may cause subsequent exercise avoidance. Research has recently proven that skeletal muscle can also release extracellular vesicles (EVs) into the circulation following a bout of exercise. However, EV’s potential role, including as a biomarker, in the response to eccentric resistance exercise stimulus remains unclear.Methods: Twelve (younger, n=7, 27.0±1.5years and older, n=5, 63.0±1.0years) healthy, physically active males, undertaking moderate, regular physical activity (3–5 times per week) performed a unilateral high intensity eccentric exercise protocol. Venous plasma was collected for assessment of EVs and creatine kinase (CK) prior to EIMD, immediately after EIMD, and 1–72h post-EIMD, and maximal voluntary isometric contraction (MVIC) and delayed onset muscle soreness (DOMS) were assessed at all time points, except 1 and 2h post-EIMD.Results: A significant effect of both time (p=0.005) and group (p&lt;0.001) was noted for MVIC, with younger participants’ MVIC being higher throughout. Whilst a significant increase was observed in DOMS in the younger group (p=0.014) and in the older group (p=0.034) following EIMD, no significant differences were observed between groups. CK was not different between age groups but was altered following the EIMD (main effect of time p=0.026), with increased CK seen immediately post-, at 1 and 2h post-EIMD. EV count tended to be lower in older participants at rest, relative to younger participants (p=0.056), whilst EV modal size did not differ between younger and older participants pre-EIMD. EIMD did not substantially alter EV modal size or EV count in younger or older participants; however, the alteration in EV concentration (ΔCount) and EV modal size (ΔMode) between post-EIMD and pre-EIMD negatively associated with CK activity. No significant associations were noted between MVIC or DOMS and either ΔCount or ΔMode of EVs at any time point.Conclusion: These findings suggest that profile of EV release, immediately following exercise, may predict later CK release and play a role in the EIMD response. Exercise-induced EV release profiles may therefore serve as an indicator for subsequent muscle damage.


1992 ◽  
Vol 2 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Kazunori Nosaka ◽  
Priscilla M. Clarkson

This study was done to determine whether eccentric exercise that causes muscle damage will produce an increase in plasma levels of zinc. Changes in total plasma zinc concentration (Zn) were examined following an eccentric and concentric exercise of the forearm flexors. Eight female subjects performed 24 maximal concentric actions (CON) with one arm and 10-14 days later performed 24 maximal eccentric actions (ECC) with the other arm. Maximal isometric force, elbow joint angles at a relaxed (RANG) and flexed position (FANG), muscle soreness, and plasma creatine kinase activity (CK) were measured as indicators of muscle damage. Zn levels were determined at the same time as CK. Maximal isometric force, RANG, FANG, and muscle soreness showed large changes after ECC but little if any change after CON. CK increased significantly after ECC but did not change after CON. Neither ECC nor CON showed significant changes in Zn following exercise. If: is concluded that exercise-induced muscle damage does not appear to produce an increase in plasma zinc levels.


2017 ◽  
Vol 27 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Yanita McLeay ◽  
Stephen R Stannard ◽  
Toby Mundel ◽  
Andrew Foskett ◽  
Matthew Barnes

This study was designed to investigate the effects of alcohol consumption on recovery of muscle force when consumed immediately postexercise in young females. Eight young women completed 300 maximal eccentric actions of the quadriceps femoris muscle on an isokinetic dynamometer on two occasions in a randomized, cross-over design after which an alcoholic beverage (0.88g ethanol/kg body weight) or an iso-caloric placebo was consumed. Maximal isokinetic (concentric and eccentric) torque and isometric tension produced across the knee were measured in both the exercised and control leg predamage, 36 hr post, and 60 hr post damage. Venous blood creatine kinase (CK) activity and muscle soreness ratings were taken before damage and once per day to 60 hr post damage. Significant differences were observed between the exercised and control leg for maximal concentric, and eccentric torque and isometric tension (p < .05). A near significant Treatment × Time interaction was observed for isometric tension (p = .077), but not for concentric or eccentric torque. No main effects of treatment (alcohol) or interactions with Time × Leg or Leg × Treatment were observed. Perceived muscle soreness during box stepping and squatting showed significant time effects (p < .05), and CK activity did not significantly change. Our results indicate that the consumption of 0.88g ethanol/kg body weight following eccentric exercise-induced muscle damage does not affect recovery in the days following damage in females.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 205 ◽  
Author(s):  
Ilenia Bazzucchi ◽  
Federica Patrizio ◽  
Roberta Ceci ◽  
Guglielmo Duranti ◽  
Paolo Sgrò ◽  
...  

The aim of the present investigation was to test the hypothesis that quercetin (Q) may prevent the strength loss and neuromuscular impairment associated with eccentric exercise-induced muscle damage (EEIMD). Twelve young men (26.1 ± 3.1 years) ingested either Q (1000 mg/day) or placebo (PLA) for 14 days using a randomized, double-blind, crossover study design. Participants completed a comprehensive neuromuscular (NM) evaluation before, during and after an eccentric protocol able to induce a severe muscle damage (10 sets of 10 maximal lengthening contractions). The NM evaluation comprised maximal voluntary isometric contraction (MVIC) and force–velocity relationship assessments with simultaneous recording of electromyographic signals (EMG) from the elbow flexor muscles. Soreness, resting arm angle, arm circumference, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) were also assessed. Q supplementation significantly increased the isometric strength recorded during MVIC compared to baseline (+4.7%, p < 0.05). Moreover, the torque and muscle fiber conduction velocity (MFCV) decay recorded during the eccentric exercise was significant lower in Q compared to PLA. Immediately after the EEIMD, isometric strength, the force–velocity relationship and MFCV were significantly lower when participants were given PLA rather than Q. Fourteen days of Q supplementation seems able to attenuate the severity of muscle weakness caused by eccentric-induced myofibrillar disruption and sarcolemmal action potential propagation impairment.


2021 ◽  
pp. 194173812199541
Author(s):  
Mikhail Santos Cerqueira ◽  
Daniel Kovacs ◽  
Ingrid Martins de França ◽  
Rafael Pereira ◽  
Sinval Bezerra da Nobrega Neto ◽  
...  

Background: The effects of ischemic preconditioning (IPC) versus a deceptive sham protocol on indirect markers of exercise-induced muscle damage (EIMD) after the application of individualized occlusion pressure were examined. The goal of using a sham protocol is to control for the potential effect of placebo. Hypothesis: IPC would surpass the sham protocol in protecting against EIMD. Study Design: A randomized, double-blinded, clinical trial. Level of Evidence: Level 1. Methods: Thirty healthy young men were randomly assigned to an eccentric exercise for the knee extensor muscles preceded by IPC (4 × 5 minutes of individualized total occlusion pressure) or sham protocol (4 × 5 minutes using 20 mm Hg). Maximal voluntary isometric torque (MVIT), rate of torque development, muscle soreness, pressure pain threshold, knee range of motion, thigh girth, and creatine kinase (CK) activity were assessed before IPC or sham protocol and up to 72 hours after the eccentric EIMD. Affective valence and perceived exertion were also evaluated. Results: MVIT decreased 17.1% in the IPC and 18.1% in the sham groups, with no differences between groups. Differences from baseline were observed in the sham group for muscle soreness at 48 hours ( P < 0.001) and 72 hours ( P = 0.02), and for CK activity at 72 hours ( P = 0.04). Muscle soreness was reduced in the IPC group at 48 hours compared with the sham group (∆ = 15.8 mm; P = 0.008) but without achieving the minimal clinically important difference. IPC induced a smaller perceived exertion than the sham protocol (∆ = 1.1 a.u.; P = 0.02). The remaining outcomes were not statistically different in both groups. Conclusion: IPC does not surpass the sham protocol to protect against mild EIMD of the knee extensors muscles. Clinical Relevance: Although IPC is a noninvasive, low-cost, and easy-to-administer intervention, the IPC effects can, in part, be explained by the placebo effect. In addition, individualized IPC promotes attenuation in perceived exertion during eccentric exercise.


Sign in / Sign up

Export Citation Format

Share Document