scholarly journals The Effects of Quercetin Supplementation on Eccentric Exercise-Induced Muscle Damage

Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 205 ◽  
Author(s):  
Ilenia Bazzucchi ◽  
Federica Patrizio ◽  
Roberta Ceci ◽  
Guglielmo Duranti ◽  
Paolo Sgrò ◽  
...  

The aim of the present investigation was to test the hypothesis that quercetin (Q) may prevent the strength loss and neuromuscular impairment associated with eccentric exercise-induced muscle damage (EEIMD). Twelve young men (26.1 ± 3.1 years) ingested either Q (1000 mg/day) or placebo (PLA) for 14 days using a randomized, double-blind, crossover study design. Participants completed a comprehensive neuromuscular (NM) evaluation before, during and after an eccentric protocol able to induce a severe muscle damage (10 sets of 10 maximal lengthening contractions). The NM evaluation comprised maximal voluntary isometric contraction (MVIC) and force–velocity relationship assessments with simultaneous recording of electromyographic signals (EMG) from the elbow flexor muscles. Soreness, resting arm angle, arm circumference, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) were also assessed. Q supplementation significantly increased the isometric strength recorded during MVIC compared to baseline (+4.7%, p < 0.05). Moreover, the torque and muscle fiber conduction velocity (MFCV) decay recorded during the eccentric exercise was significant lower in Q compared to PLA. Immediately after the EEIMD, isometric strength, the force–velocity relationship and MFCV were significantly lower when participants were given PLA rather than Q. Fourteen days of Q supplementation seems able to attenuate the severity of muscle weakness caused by eccentric-induced myofibrillar disruption and sarcolemmal action potential propagation impairment.

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2850
Author(s):  
Ilenia Bazzucchi ◽  
Federica Patrizio ◽  
Roberta Ceci ◽  
Guglielmo Duranti ◽  
Stefania Sabatini ◽  
...  

This study was aimed at investigating whether quercetin (Q) may improve the recovery of neuromuscular function and biochemical parameters in the 7 days following an eccentric exercise-induced muscle damage (EEIMD). Sixteen men (25.9 ± 3.3 y) ingested Q (1000 mg/day) or placebo (PLA) for 14 days following a double-blind crossover study design. A neuromuscular (NM) test was performed pre–post, 24 h, 48 h, 72 h, 96 h and 7 days after an intense eccentric exercise. The force–velocity relationship of the elbow flexor muscles and their maximal voluntary isometric contraction (MVIC) were recorded simultaneously to the electromyographic signals (EMG). Pain, joint angle, arm circumference, plasma creatine kinase (CK) and lactate-dehydrogenase (LDH) were also assessed. The results showed that Q supplementation significantly attenuated the strength loss compared to PLA. During the recovery, force–velocity relationship and mean fibers conduction velocity (MFCV) persisted significantly less when participants consumed PLA rather than Q, especially at the highest angular velocities (p < 0.02). A greater increase in biomarkers of damage was also evident in PLA with respect to Q. Q supplementation for 14 days seems able to ameliorate the recovery of eccentric exercise-induced weakness, neuromuscular function impairment and biochemical parameters increase probably due to its strong anti-inflammatory and antioxidant action.


2006 ◽  
Vol 31 (3) ◽  
pp. 313-319 ◽  
Author(s):  
Kazunori Nosaka ◽  
Dale Chapman ◽  
Mike Newton ◽  
Paul Sacco

This study tested the hypothesis that the magnitude of maximal isometric strength (MVC) loss immediately following eccentric exercise (MVC-post) would relate to changes in other indirect markers of muscle damage following exercise. Eighty-nine men were recruited from the same student population and performed 24 maximal eccentric actions of the elbow flexors. Commonly used markers of muscle damage such as relaxed and flexed elbow joint angles, range of motion (ROM), upper-arm circumference, muscle soreness, and plasma creatine kinase (CK) activity were measured before, immediately after, and 1-4 d after exercise. Pearson's product-moment correlation coefficients (r) between change in MVC-post and other markers of muscle damage, as well as MVC during recovery days, were calculated. Changes in MVC-post ranged from -72.8% to -17.6%, and correlated significantly (p < 0.01) with MVC at 1 (r = 0.59), 2 (0.63), 3 (0.61), and 4 (0.62) d after exercise. Reduction in MVC-post also correlated significantly (p < 0.05) with changes in relaxed (r = 0.50) and flexed elbow joint angles (-0.40), ROM (0.55), arm circumference (-0.45), peak palpation (-0.34) and extension muscle soreness (-0.48), and peak CK activity (-0.59). However, the r values were not necessarily high, and MVC-post poorly reflected the distribution of some measures, such as peak CK activity (124 - 50 440 IU·L-1). These results suggest that MVC-post is not a strong correlate of the changes in markers of muscle damage following eccentric exercise of the elbow flexors.Key words: maximal isometric strength, plasma CK activity, ROM, swelling, muscle soreness.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yvoni Kyriakidou ◽  
Isabella Cooper ◽  
Igor Kraev ◽  
Sigrun Lange ◽  
Bradley T. Elliott

Background: Exercise-induced muscle damage (EIMD) results in transient muscle inflammation, strength loss, and muscle soreness and may cause subsequent exercise avoidance. Research has recently proven that skeletal muscle can also release extracellular vesicles (EVs) into the circulation following a bout of exercise. However, EV’s potential role, including as a biomarker, in the response to eccentric resistance exercise stimulus remains unclear.Methods: Twelve (younger, n=7, 27.0±1.5years and older, n=5, 63.0±1.0years) healthy, physically active males, undertaking moderate, regular physical activity (3–5 times per week) performed a unilateral high intensity eccentric exercise protocol. Venous plasma was collected for assessment of EVs and creatine kinase (CK) prior to EIMD, immediately after EIMD, and 1–72h post-EIMD, and maximal voluntary isometric contraction (MVIC) and delayed onset muscle soreness (DOMS) were assessed at all time points, except 1 and 2h post-EIMD.Results: A significant effect of both time (p=0.005) and group (p&lt;0.001) was noted for MVIC, with younger participants’ MVIC being higher throughout. Whilst a significant increase was observed in DOMS in the younger group (p=0.014) and in the older group (p=0.034) following EIMD, no significant differences were observed between groups. CK was not different between age groups but was altered following the EIMD (main effect of time p=0.026), with increased CK seen immediately post-, at 1 and 2h post-EIMD. EV count tended to be lower in older participants at rest, relative to younger participants (p=0.056), whilst EV modal size did not differ between younger and older participants pre-EIMD. EIMD did not substantially alter EV modal size or EV count in younger or older participants; however, the alteration in EV concentration (ΔCount) and EV modal size (ΔMode) between post-EIMD and pre-EIMD negatively associated with CK activity. No significant associations were noted between MVIC or DOMS and either ΔCount or ΔMode of EVs at any time point.Conclusion: These findings suggest that profile of EV release, immediately following exercise, may predict later CK release and play a role in the EIMD response. Exercise-induced EV release profiles may therefore serve as an indicator for subsequent muscle damage.


2021 ◽  
Vol 30 (2) ◽  
pp. 158-166
Author(s):  
Hyeon-deok Jo ◽  
Choun-sub Kim ◽  
Maeng-kyu Kim

PURPOSE:The present study aimed to investigate the effects of transdermal application of methylsulfonylmethane (MSM) on muscle damage and recovery following eccentric exercise in young men.METHODS: Eleven college-aged men without any cardiovascular or orthopedic disorders underwent two sessions consisting of a control session (CS) and an experimental session (ES) in a random order with at least 2 weeks of wash-out between the sessions. The participants performed 30 maximal eccentric exercises involving their non-dominant elbow flexors in each session. Circumference, muscle soreness, range of motion, maximal voluntary isometric contraction (MVIC), and muscular echo intensity (EI) were measured to evaluate the changes in the level of exercise-induced muscle damage (EIMD). All measurements were performed at 24, 48, 72, and 96 hours after exercise and also immediately before and after exercise.RESULTS:Transdermal application of MSM in ES attenuated muscle swelling and decreased MVIC after eccentric exercise when compared with CS. Muscle soreness and EI tended to increase less rapidly and decrease more rapidly in ES than in CS.CONCLUSIONS: Transdermal application of MSM may induce relatively positive effects on EIMD and recovery following eccentric exercise when compared with the treatment that has been widely used previously.


2015 ◽  
Vol 10 (3) ◽  
pp. 346-352 ◽  
Author(s):  
Che-Hsiu Chen ◽  
Trevor C. Chen ◽  
Mei-Hwa Jan ◽  
Jiu-Jenq Lin

Objectives:To examine whether an acute bout of active or dynamic hamstring-stretching exercises would reduce the amount of muscle damage observed after a strenuous eccentric task and to determine whether the stretching protocols elicit similar responses.Design:A randomized controlled clinical trial.Methods:Thirty-six young male students performed 5 min of jogging as a warm-up and were allocated to 1 of 3 groups: 3 min of static active stretching (SAS), 3 min of dynamic active stretching (DAS), or control (CON). All subjects performed eccentric exercise immediately after stretching. Heart rate, core temperature, maximal voluntary isometric contraction, passive hip flexion, passive hamstring stiffness (PHS), plasma creatine kinase activity, and myoglobin were recorded at prestretching, at poststretching, and every day after the eccentric exercises for 5 d.Results:After stretching, the change in hip flexion was significantly higher in the SAS (5°) and DAS (10.8°) groups than in the CON (–4.1°) group. The change in PHS was significantly higher in the DAS (5.6%) group than in the CON (–5.7%) and SAS (–6.7%) groups. Furthermore, changes in muscle-damage markers were smaller in the SAS group than in the DAS and CON groups.Conclusions:Prior active stretching could be useful for attenuating the symptoms of muscle damage after eccentric exercise. SAS is recommended over DAS as a stretching protocol in terms of strength, hamstring range of motion, and damage markers.


2012 ◽  
Vol 37 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Matthew. J. Barnes ◽  
Toby Mündel ◽  
Stephen R. Stannard

Voluntary and electrically stimulated muscular performance was examined to identify the effects of acute alcohol consumption on neuromuscular function in the presence and absence of exercise-induced muscle damage (EIMD). After initial neuromuscular performance measures were made, 12 subjects completed a bout of eccentric exercise (EX) using the quadriceps muscles of 1 leg while the remaining 11 subjects did not exercise (NX). Subjects then consumed either an alcoholic beverage containing 1 g·kg–1body weight (ALC) or a nonalcoholic beverage (OJ). On another occasion the contralateral leg of both groups was tested and those in the EX group performed an equivalent bout of eccentric exercise after which the other beverage was consumed. Measurements of neuromuscular function were made pre-exercise and 36 and 60 h post-beverage consumption. Creatine kinase (CK) was measured pre-exercise and at 12, 36, and 60 h. Significantly greater (p < 0.01) decrements in maximal voluntary isometric contraction were observed with EX ALC at 36 and 60 h compared with EX OJ, and no change was seen in the NX group. Significant decreases in voluntary activation were observed at 36 h (p = 0.003) and 60 h (p = 0.01) with EX ALC only. Elevations in CK were observed at all posteccentric exercise time points (all p < 0.05) under both EX OJ and ALC. No change in electromyography or low-frequency fatigue was observed under either treatment in either group. These results suggest that decreased neural drive appears to contribute to alcohol’s effect on the magnitude of EIMD-related decrements in voluntary force generation.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1593 ◽  
Author(s):  
Kirstie L. Lamb ◽  
Mayur K. Ranchordas ◽  
Elizabeth Johnson ◽  
Jessica Denning ◽  
Faye Downing ◽  
...  

Tart cherry juice (TC) and pomegranate juice (POM) have been demonstrated to reduce symptoms of exercise-induced muscle damage (EIMD), but their effectiveness has not been compared. This randomized, double-blind, parallel study compared the effects of TC and POM on markers of EIMD. Thirty-six non-resistance trained men (age 24.0 (Interquartile Range (IQR) 22.0, 33.0) years, body mass index (BMI) 25.6 ± 4.0 kg·m−2) were randomly allocated to consume 2 × 250 mL of: TC, POM, or an energy-matched fruit-flavored placebo drink twice daily for nine days. On day 5, participants undertook eccentric exercise of the elbow flexors of their non-dominant arm. Pre-exercise, immediately post-exercise, and at 24 h, 48 h, 72 h and 96 h post-exercise, maximal isometric voluntary contraction (MIVC), delayed onset muscle soreness (DOMS), creatine kinase (CK), and range of motion (ROM) were measured. The exercise protocol induced significant decreases in MIVC (p < 0.001; max decrease of 26.8%, 24 h post-exercise) and ROM (p = 0.001; max decrease of 6.8%, 72 h post-exercise) and significant increases in CK (p = 0.03; max increase 1385 U·L−1, 96 h post-exercise) and DOMS (p < 0.001; max increase of 26.9 mm, 48 h post-exercise). However, there were no statistically significant differences between treatment groups (main effect of group p > 0.05 or group x time interaction p > 0.05). These data suggest that in non-resistance trained men, neither TC nor POM enhance recovery from high-force eccentric exercise of the elbow flexors.


2012 ◽  
Vol 22 (6) ◽  
pp. 430-437 ◽  
Author(s):  
Kevin S. O’Fallon ◽  
Diksha Kaushik ◽  
Bozena Michniak-Kohn ◽  
C. Patrick Dunne ◽  
Edward J. Zambraski ◽  
...  

The flavonoid quercetin is purported to have potent antioxidant and anti-inflammatory properties. This study examined if quercetin supplementation attenuates indicators of exercise-induced muscle damage in a doubleblind laboratory study. Thirty healthy subjects were randomized to quercetin (QU) or placebo (PL) supplementation and performed 2 separate sessions of 24 eccentric contractions of the elbow flexors. Muscle strength, soreness, resting arm angle, upper arm swelling, serum creatine kinase (CK) activity, plasma quercetin (PQ), interleukin-6 (IL-6), and C-reactive protein (CRP) were assessed before and for 5 d after exercise. Subjects then ingested nutrition bars containing 1,000 mg/d QU or PL for 7 d before and 5 d after the second exercise session, using the opposite arm. PQ reached 202 ± 52 ng/ml after 7 d of supplementation and remained elevated during the 5-d postexercise recovery period (p < .05). Subjects experienced strength loss (peak = 47%), muscle soreness (peak = 39 ± 6 mm), reduced arm angle (–7° ± 1°), CK elevations (peak = 3,307 ± 1,481 U/L), and arm swelling (peak = 11 ± 2 mm; p < .0001), indicating muscle damage and inflammation; however, differences between treatments were not detected. Eccentric exercise did not alter plasma IL-6 (peak = 1.9 pg/ml) or CRP (peak = 1.6 mg/L) relative to baseline or by treatment. QU supplementation had no effect on markers of muscle damage or inflammation after eccentric exercise of the elbow flexors.


2010 ◽  
Vol 108 (6) ◽  
pp. 1651-1658 ◽  
Author(s):  
Monica J. Hubal ◽  
Joseph M. Devaney ◽  
Eric P. Hoffman ◽  
Edward J. Zambraski ◽  
Heather Gordish-Dressman ◽  
...  

Novel eccentric (lengthening contraction) exercise typically results in muscle damage, which manifests as prolonged muscle dysfunction, delayed onset muscle soreness, and leakage of muscle proteins into circulation. There is a large degree of variability in the damage response of individuals to eccentric exercise, with higher responders at risk for potentially fatal rhabdomyolysis. We hypothesized that single nucleotide polymorphisms (SNPs) in chemokine ligand 2 ( CCL2) and its receptor chemokine receptor 2 ( CCR2) associate with the high degrees of variability in the muscle damage response. We based this hypothesis on CCL2's roles in macrophage and satellite cell signaling in injured muscle. DNA was obtained from 157 untrained men and women following maximal eccentric exercise. Strength loss, soreness, serum creatine kinase (CK), and myoglobin levels before and during recovery from a single exercise bout were tested for association with 16 SNPs in CCL2 and CCR2. The rare alleles for rs768539 and rs3918358 (CCR2) were significantly ( P < 0.05) associated with lower preexercise strength in men, whereas CCL2 SNPs (rs13900, rs1024611, and rs1860189) and CCR2 (rs1799865) were associated with altered preexercise CK levels in women. During recovery, the rs3917878 genotype ( CCL2) was associated with attenuated strength recovery in men and an elevated CK response in women. CCR2 variants were associated with slower strength recovery in women (rs3918358) and elevated soreness (rs1799865) across all subjects. In summary, we found that SNPs in CCL2 and CCR2 are associated with exercise-induced muscle damage and that the presence of certain variants may result in an exaggerated damage response to strenuous exercise.


Sign in / Sign up

Export Citation Format

Share Document