scholarly journals Feature Selection Based on Modified Bat Algorithm

2017 ◽  
Vol E100.D (8) ◽  
pp. 1860-1869 ◽  
Author(s):  
Bin YANG ◽  
Yuliang LU ◽  
Kailong ZHU ◽  
Guozheng YANG ◽  
Jingwei LIU ◽  
...  
Author(s):  
V. Yasaswini ◽  
◽  
Santhi Baskaran

Data mining is the action of searching the large existing database in order to get new and best information. It plays a major and vital role now-a-days in all sorts of fields like Medical, Engineering, Banking, Education and Fraud detection. In this paper Feature selection which is a part of Data mining is performed to do classification. The role of feature selection is in the context of deep learning and how it is related to feature engineering. Feature selection is a preprocessing technique which selects the appropriate features from the data set to get the accurate result and outcome for the classification. Nature-inspired Optimization algorithms like Ant colony, Firefly, Cuckoo Search and Harmony Search showed better performance by giving the best accuracy rate with less number of features selected and also fine fMeasure value is noted. These algorithms are used to perform classification that accurately predicts the target class for each case in the data set. We propose a technique to get the optimized feature selection to perform classification using Meta Heuristic algorithms. We applied new and recent advanced optimized algorithm named Modified Bat algorithm on University of California Irvine datasets that showed comparatively equal results with best performed existing firefly but with less number of features selected. The work is implemented using JAVA and the Medical dataset has been used. These datasets were chosen due to nominal class features. The number of attributes, instances and classes varies from chosen dataset to represent different combinations. Classification is done using J48 classifier in WEKA tool. We demonstrate the comparative results of the presently used algorithms with the existing algorithms thoroughly. The significance of this research is it will show a great impact in selecting the best features out of all the existing features which gives best accuracy rates which helps in extracting the information from raw data in Data Mining Domain. The Value of this research is it will manage main fields like medical and banking which gives exact and proper results in their respective field. The best quality of the research is to optimize the selection of features to achieve maximum predictive accuracy of the data sets which solves both single variable and multi-variable functions through the generation of binary structuring of features in the dataset and to increase the performance of classification by using nature inspired and Meta Heuristic algorithms.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3956
Author(s):  
Khaled Guerraiche ◽  
Latifa Dekhici ◽  
Eric Chatelet ◽  
Abdelkader Zeblah

The design of energy systems is very important in order to reduce operating costs and guarantee the reliability of a system. This paper proposes a new algorithm to solve the design problem of optimal multi-objective redundancy of series-parallel power systems. The chosen algorithm is based on the hybridization of two metaheuristics, which are the bat algorithm (BA) and the generalized evolutionary walk algorithm (GEWA), also called BAG (bat algorithm with generalized flight). The approach is combined with the Ushakov method, the universal moment generating function (UMGF), to evaluate the reliability of the multi-state series-parallel system. The multi-objective design aims to minimize the design cost, and to maximize the reliability and the performance of the electric power generation system from solar and gas generators by taking into account the reliability indices. Power subsystem devices are labeled according to their reliabilities, costs and performances. Reliability hangs on an operational system, and implies likewise satisfying customer demand, so it depends on the amassed batch curve. Two different design allocation problems, commonly found in power systems planning, are solved to show the performance of the algorithm. The first is a bi-objective formulation that corresponds to the minimization of system investment cost and maximization of system availability. In the second, the multi-objective formulation seeks to maximize system availability, minimize system investment cost, and maximize the capacity of the system.


Author(s):  
G. Bala Murali ◽  
Pradip Kumar Sahu ◽  
B.B.V.L. Deepak ◽  
B.B. Biswal

This report largely focused on the influence on the delivery system of the Renewable Distributed Generations (RDGs). DG's intercourse showed that the suggested the traditional method of radial distribution into a multiple DG scheme. The main contribution of this study is to reduce total power losses and increase the distribution system's power quality using RDGs. The Loss sensitivity factor (LSF) is used to find the RDGs. A heuristic search novel The Modified Bat Algorithm (MBA) is used to define the amount of the RDGs. MBA is largely focused on microbats' higher elastic modulus. The proposed MBA is measured on standard bus test systems IEEE 33 and 69.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668529 ◽  
Author(s):  
Sheng-wei Fei

In this article, fault diagnosis of bearing based on relevance vector machine classifier with improved binary bat algorithm is proposed, and the improved binary bat algorithm is used to select the appropriate features and kernel parameter of relevance vector machine. In the improved binary bat algorithm, the new velocities updating method of the bats is presented in order to ensure the decreasing of the probabilities of changing their position vectors’ elements when the position vectors’ elements of the bats are equal to the current best location’s element, and the increasing of the probabilities of changing their position vectors’ elements when the position vectors’ elements of the bats are unequal to the current best location’s element, which are helpful to strengthen the optimization ability of binary bat algorithm. The traditional relevance vector machine trained by the training samples with the unreduced features can be used to compare with the proposed improved binary bat algorithm–relevance vector machine method. The experimental results indicate that improved binary bat algorithm–relevance vector machine has a stronger fault diagnosis ability of bearing than the traditional relevance vector machine trained by the training samples with the unreduced features, and fault diagnosis of bearing based on improved binary bat algorithm–relevance vector machine is feasible.


2019 ◽  
Vol 24 (2) ◽  
pp. 201-214
Author(s):  
Rashed Poormirzaee ◽  
Siamak Sarmady ◽  
Yusuf Sharghi

Similar to any other geophysical method, seismic refraction method faces non-uniqueness in the estimation of model parameters. Recently, different nonlinear seismic processing techniques have been introduced, particularly for seismic inversion. One of the recently developed metaheuristic algorithms is bat optimization algorithm (BA). Standard BA is usually quick at the exploitation of the solution, while its exploration ability is relatively poor. In order to improve exploration ability of BA, in the current study, a hybrid metaheuristic algorithm by inclusion a mutation operator into BA, so-called mutation based bat algorithm (MBA), is introduced to inversion of seismic refraction data. The efficiency and stability of the proposed inversion algorithm were tested on different synthetic cases. Finally, the MBA inversion algorithm was applied to a real dataset acquired from Leylanchay dam site at East-Azerbaijan province, Iran, to determine alluvium depth. Then, the performance of MBA on both synthetic and real datasets was compared with standard BA. Moreover, the dataset was further processed following a tomographic approach and the results were compared to the results of the proposed MBA inversion method. In general, the MBA inversion results were superior to standard BA inversion and results of MBA were in good agreement with available boreholes data and geological sections at the dam site. The analysis of the seismic data showed that the studied site comprises three distinct layers: a saturated alluvial, an unsaturated alluvial, and a dolomite bedrock. The measured seismic velocity across the dam site has a range of 400 to 3,500 m/s, with alluvium thickness ranging from 5 to 19 m. Findings showed that the proposed metaheuristic inversion framework is a simple, fast, and powerful tool for seismic data processing.


Sign in / Sign up

Export Citation Format

Share Document