scholarly journals Reaction rate and residual effect of rice husk ash in soil acidity parameters

Revista CERES ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 278-285
Author(s):  
Aline Hernandez Kath ◽  
Gláucia Oliveira Islabão ◽  
Ledemar Carlos Vahl ◽  
Juliana Brito da Silva Teixeira

ABSTRACT The rice husk ash has been applied in agricultural land, with potential of replace limestone and, supply phosphorus and potassium. However, its residual effect in soil is still unknown. This investigation aimed to evaluate the reaction rate and residual effect of rice husk ash in soils acidity parameters. A field experiment was conducted with five treatments: four rice husk ash dosages 0, 30, 60 and 120 t ha-1 and one treatment with recommended soil lime and fertilizer (dolomitic limestone to reach pH 6, 150 kg ha-1 P2O5 as single superphosphate and 80 kg ha-1 K2O as potassium chloride) where five soil samples. Soil samples were collected in the layers 0.00 - 0.10 m and 0.10 - 0.20 m at 15, 211, 400, 517 and 804 days after ash incorporation. Chemical attributes were determined: soil pH (pH), soil base, exchangeable cation values (Ca, Mg, K and Na) and cation exchange capacity (CEC) at pH 7. Results showed that reaction rate of rice husk ash is faster when compared to liming. As greater was rice husk ash dosage applied in soil, higher is the residual effect in pH. As corrective of soil acidity, the residual effect of rice husk ash is just the required time to occur the natural process of reacidification and leaching of basic cations, about 33 months for soils and weather conditions similar to this work.

2014 ◽  
Vol 38 (3) ◽  
pp. 934-941 ◽  
Author(s):  
Gláucia Oliveira Islabão ◽  
Ledemar Carlos Vahl ◽  
Luís Carlos Timm ◽  
Donald Luiz Paul ◽  
Aline Hernandez Kath

Rice husk ash (RHA) is a by-product from the burning of rice husk that can have favorable effects on the soil in terms of acidity correction. The objectives of this study were to determine the effective calcium carbonate equivalent (ECC) of RHA under field conditions, and establish technical criteria as a basis for estimating the overall ECC of RHA. The 12 treatments of the experiment consisted of 10 RHA dosages (0, 10, 20, 30, 40, 60, 80, 100, 120, and 140 Mg ha-1) and two references, one of which was an absolute control (AC) and the other a plot limed and fertilized according to official recommendations (recommended fertilization - RF). The soil was sampled twice (15 and 210 days after incorporating RHA), in the layers 0.00-0.10 and 0.10-0.20 m, to determine the pH(H2O) and base saturation (V%). The ECC and neutralizing value (NV) of RHA were also determined. The results showed that RHA neutralizes soil acidity, in a faster reaction than conventional limestone, despite a low ECC (around 3 %).


2019 ◽  
Vol 3 (1) ◽  
pp. 16-21
Author(s):  
Sri Puji Astuti ◽  
Rina Kurnianingsih

Community service activities has been done with target audiences of tofu tempe craftsmen, farm laborers, and housewife in Lingkung Daye Hamlet, Puyung Village, Jonggat Sub-district. The purpose of this activity were to socialize the importance of the clean environment to the residents of Lingkung Daye Hamlet, to socialize the benefit of rice husk ash to make solid compost with the windraw method, to provide solutions the benefit of compost and marketing prospects. The method applied in this PPM activity were lectured, discussion, question and answer by applying the Applied Group Discuss (AGD) technique involving the community, demonstrations, practices and survey the location of the demonstration plot for the application of compost fertilizer that had been made previously on the agricultural land of tomatoes and chillies. An evaluation was conducted by monitor the success of the activity, using the observation method. The conclusion were 100% of participants understood the material presented, as many as 90% of participants understood how to make solid compost from rice husk ash and as many as 100% of motivated participants looked for alternatives to processing husk ash waste and as many as 80% of participants were motivated to apply and sold the solid compost products.


2016 ◽  
Vol 155 (3) ◽  
pp. 465-474 ◽  
Author(s):  
H. S. THIND ◽  
YADVINDER-SINGH ◽  
SANDEEP SHARMA ◽  
VARINDERPAL-SINGH ◽  
H. S. SRAN ◽  
...  

SUMMARYBagasse and rice husk are two important agro-industrial by-products that are used as fuel in the sugar and rice mill industries, thus producing large quantities of bagasse ash (BA; 0·05 of bagasse) and rice husk ash (0·20 of rice husk) as waste material. Applying BA and rice husk ash (RHA) to agricultural land improves yield, nutrient uptake and chemical fertility of soil, particularly with special reference to available phosphorus (P) and potassium (K). The present field experiment was conducted for 3 years to evaluate the P fertilizer value of these agro-industrial waste materials in a wheat–rice system (WRS). The experiment was laid out in a split-plot design with RHA and BA applied at 10 t/ha and including a no-amendment control as the main plot treatments and three levels of fertilizer P (0, 13 and 26 kg P/ha; designated P0, P13and P26, respectively) as sub-plot treatments to wheat in WRS. Application of fertilizer P increased the wheat grain yield up to P26in the un-amended control treatment. However, a significant response of wheat to fertilizer P was also observed up to P13in the presence of BA and RHA, thereby saving 50% of fertilizer P. Both RHA and BA increased wheat productivity by 12 and 16%, respectively, over the un-amended control. The subsequent rice crop also produced 14% higher paddy yield when the two ashes were applied along with P13to the previous wheat crop. The increases in grain yield were accompanied by significant increases in the uptake of P and K, and P content (Olsen P) in the soil. The application of recommended P (P26) in un-amended plots resulted in a negative P balance of 9·3 kg P/ha/year. On the other hand, the application of BA alone and RHA along with P13resulted in neutral/slightly positive P balance. A strong linear relationship (R2= 0·98) was observed between P balance and Olsen-P build up in the soil. It may be concluded that application of BA and RHA has the potential to increase system productivity and reduce the cost of inputs in terms of reduced application of fertilizer P to wheat and rice.


2021 ◽  
Vol 11 (14) ◽  
pp. 6618
Author(s):  
Khaled Ibrahim Azarroug Ehwailat ◽  
Mohd Ashraf Mohamad Ismail ◽  
Ali Muftah Abdussalam Ezreig

The treatment of sulfate-bearing soil with calcium-based stabilizers such as cement or lime often results in ettringite formation, consequently leading to swelling and strength deterioration. Ettringite formation has negative environmental and economic effects on various civil engineering structures. This study was conducted to investigate the use of different materials (nano–magnesium oxide (M), ground granulated blast-furnace slag (GGBS), and rice husk ash (RHA)) for gypseous soil stabilization to prevent ettringite formation. Various tests were performed, including flexural strength, unconfined compression strength, linear expansion, and microstructure analysis (SEM/EDX), on lime (L)-, (M)-, (M-RHA)-, (M-GGBS)-, and (M-GGBS-RHA)-stabilized gypseous soil samples to determine their properties. The results indicated that the swelling rates of the soil samples mixed with 20% M-RHA, M-GGBS, and M-GGBS-RHA binders were much lower (less than 0.01% of volume change) than those of the soil samples mixed with 10% and 20% lime-stabilized binders after a curing period of 90 days. Meanwhile, the strengths of the soil samples mixed with 20% of M-RHA, M-GGBS, and M-GGBS-RHA soil specimens after soaking of 90 days were obviously higher (with a range from 2.7–12.8 MPa) than those of the soil samples mixed with 20% of lime-stabilized binder. The SEM and EDX results showed no ettringite formation in the M-RHA-, M-GGBS-, and M-GGBS-RHA-stabilized soils. Overall, the test results proved the potential of M-RHA, M-GGBS, and M-GGBS-RHA as effective soil stabilizers.


In many rice producing countries of the world, including in Vietnam, various research aimed at using rice husk ash (RHA) as a finely dispersed active mineral additive in cements, concrete and mortars are being conducted. The effect of the duration of the mechanoactivation of the RHA, produced under laboratory conditions in Vietnam, on its pozzolanic activity were investigated in this study. The composition of ash was investigated by laser granulometry and the values of indicators characterizing the dispersion of its particles before and after mechanical activation were established. The content of soluble amorphous silicon oxide in rice husk ash samples was determined by photocolorimetric analysis. The pizzolanic activity of the RHA, fly ash and the silica fume was also compared according to the method of absorption of the solution of the active mineral additive. It is established that the duration of the mechanical activation of rice husk ash by grinding in a vibratory mill is optimal for increasing its pozzolanic activity, since it simultaneously results in the production of the most dispersed ash particles with the highest specific surface area and maximum solubility of the amorphous silica contained in it. Longer grinding does not lead to further reduction in the size of ash particles, which can be explained by their aggregation, and also reduces the solubility of amorphous silica in an aqueous alkaline medium.


2014 ◽  
Vol 27 (2) ◽  
pp. 148-160
Author(s):  
Hassan K. Hassan ◽  
Najla J. Al-Amiri ◽  
Mohammed M. Yassen

2018 ◽  
Vol 60 (4) ◽  
pp. 3-7
Author(s):  
Thi To Yen Nguyen ◽  
Phung Anh Nguyen ◽  
Thi Thuy Van Nguyen ◽  
Tri Nguyen ◽  
Ky Phuong Ha Huynh ◽  
...  
Keyword(s):  
Red Mud ◽  

2015 ◽  
Vol 57 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Ahmad Adlie Shamsuri ◽  
Ahmad Khuzairi Sudari ◽  
Edi Syams Zainudin ◽  
Mazlina Ghazali

Sign in / Sign up

Export Citation Format

Share Document