scholarly journals LEAF TOTAL NITROGEN CONCENTRATION AS AN INDICATOR OF NITROGEN STATUS FOR PLANTLETS AND YOUNG PLANTS OF EUCALYPTUS CLONES

2015 ◽  
Vol 39 (4) ◽  
pp. 1127-1140 ◽  
Author(s):  
Eric Victor de Oliveira Ferreira ◽  
Roberto Ferreira Novais ◽  
Bruna Maximiano Médice ◽  
Nairam Félix de Barros ◽  
Ivo Ribeiro Silva

The use of leaf total nitrogen concentration as an indicator for nutritional diagnosis has some limitations. The objective of this study was to determine the reliability of total N concentration as an indicator of N status for eucalyptus clones, and to compare it with alternative indicators. A greenhouse experiment was carried out in a randomized complete block design in a 2 × 6 factorial arrangement with plantlets of two eucalyptus clones (140 days old) and six levels of N in the nutrient solution. In addition, a field experiment was carried out in a completely randomized design in a 2 × 2 × 2 × 3 factorial arrangement, consisting of two seasons, two regions, two young clones (approximately two years old), and three positions of crown leaf sampling. The field areas (regions) had contrasting soil physical and chemical properties, and their soil contents for total N, NH+4-N, and NO−3-N were determined in five soil layers, up to a depth of 1.0 m. We evaluated the following indicators of plant N status in roots and leaves: contents of total N, NH+4-N, NO−3-N, and chlorophyll; N/P ratio; and chlorophyll meter readings on the leaves. Ammonium (root) and NO−3-N (root and leaf) efficiently predicted N requirements for eucalyptus plantlets in the greenhouse. Similarly, leaf N/P, chlorophyll values, and chlorophyll meter readings provided good results in the greenhouse. However, leaf N/P did not reflect the soil N status, and the use of the chlorophyll meter could not be generalized for different genotypes. Leaf total N concentration is not an ideal indicator, but it and the chlorophyll levels best represent the soil N status for young eucalyptus clones under field conditions.

1976 ◽  
Vol 87 (2) ◽  
pp. 293-296 ◽  
Author(s):  
A. Gupta ◽  
M. C. Saxena

SummaryLeaf samples were collected, at weekly intervals, throughout the growing season, from potato (Solanum tuberosumL.) plants supplied with varying amounts of nitrogen (0, 60, 120, 180 and 240 kg N/ha) and analysed for total N. Application of nitrogen increased the N concentration in the green leaves at all stages of growth. There was a significant curvilinear relationship between the final tuber yield and the total N concentration in the leaves at 48–90 days after planting in 1968–9 and at 79–107 days after planting in 1969–70. The N concentration at 70–90 days after planting was consistently related to the final tuber yield in both years. Thus this period was ideal for assessing the nitrogen status of potato plants. The critical concentration of total nitrogen generally decreased with advance in age. It ranged from 4·65% at 76 days to 3·30% at 90 days during 1968–9, whereas in 1969–70 it ranged from 4·20% at 79 days to 3·80% at 93 days. During the period from 83 to 86 days the critical percentage was around 3·6% in both the years.


1988 ◽  
Vol 28 (3) ◽  
pp. 401 ◽  
Author(s):  
DO Huett ◽  
G Rose

The tomato cv. Flora-Dade was grown in sand culture with 4 nitrogen (N) levels of 1.07-32.14 mmol L-1 applied as nitrate each day in a complete nutrient solution. The youngest fully opened leaf (YFOL) and remaining (bulked) leaves were harvested at regular intervals over the 16-week growth period. Standard laboratory leaf total and nitrate N determinations were conducted in addition to rapid nitrate determinations on YFOL petiole sap. The relationships between plant growth and leaf N concentration, which were significantly affected by N application level, were used to derive diagnostic leaf N concentrations. Critical and adequate concentrations in petiole sap of nitrate-N, leaf nitrate-N and total N for the YFOL and bulked leaf N were determined from the relationship between growth rate relative to maximum at each sampling time and leaf N concentration. YFOL petiole sap nitrate-N concentration, which can be measured rapidly in the field by using commercial test strips, gave the most sensitive guide to plant N status. Critical values of 770-1 120 mg L-I were determined over the 10-week period after transplanting (first mature fruit). YFOL (leaf + petiole) total N concentration was the most consistent indicator of plant N status where critical values of4.45-4.90% were recorded over the 4- 12 week period after transplanting (early harvests at 12 weeks). This test was less sensitive but more precise than the petiole sap nitrate test. The concentrations of N, potassium, phosphorus, calcium and magnesium in YFOL and bulked leaf corresponding to the N treatments producing maximum growth rates are presented, because nutrient supply was close to optimum and the leaf nutrient concentrations can be considered as adequate levels.


2019 ◽  
Vol 29 (3) ◽  
pp. 308-313 ◽  
Author(s):  
Russell Galanti ◽  
Alyssa Cho ◽  
Amjad Ahmad ◽  
Javier Mollinedo

Nitrogen (N) management in macadamia (Macadamia integrifolia) orchards is an important concern for growers. Leaf tissue analysis is the accepted method for determining N status in macadamia; however, this process is expensive and time-consuming. The chlorophyll meter has been used in other crops to estimate N status in plants through estimation of the amount of chlorophyll in leaf tissue. The use of the chlorophyll meter in two macadamia cultivars (Kakea and Kau) at two locations in Hawai’i (Kapa’au and Pahala) and five time periods (12 Apr. 2017, 13 June 2017, 15 June 2017, 18 Dec. 2017, and 20 Feb. 2018) was assessed. Leaf samples were collected based on a tissue-sampling protocol, chlorophyll meter (SPAD) values were collected, and leaves were analyzed for total N concentration. Data were analyzed statistically using linear regression. Leaf tissue N concentration had a positive monotonic relationship to SPAD values for both macadamia cultivars, both locations, and all sampling periods. The sampling period of Apr. 2017 for ‘Kakea’ macadamia had the greatest R2 value for the linear regression at 0.85. The Feb. 2018 sampling period had an R2 value for the linear regression of 0.74. ‘Kau’ macadamia had the greatest R2 value for the linear regression of 0.24 in the Dec. 2017 sampling period. The slopes of the two macadamia cultivars for June 2017 were different from each other, suggesting that N recommendations need to be customized for specific macadamia cultivars if sampled in summer. The chlorophyll meter can be used for general estimation of tissue N in macadamia. Additional methods need to be considered and researched to refine procedures for direct estimation of total N concentration when using the chlorophyll meter.


2004 ◽  
Vol 52 (1) ◽  
pp. 95-104 ◽  
Author(s):  
P. Janaki ◽  
T. M. Thiyagarajan

Field experiments were conducted in June-September 1998 and 1999 with rice variety ASD18 at the wetland farm of Tamil Nadu Agricultural University, in Coimbatore, India to examine variations in 'Y' leaf (youngest fully expanded leaf) N concentration as influenced by different planting densities and N management strategies in a split plot design. The main plot consisted of three plant populations (33, 66 and 100 hills m-2) and the sub-plots treatments of five N management approaches. The results revealed that the nitrogen concentration progressively declined with growth, the decline being steep up to 35 days after transplanting, wereafter the values became almost linear up to the flowering stage in all the treatments. The mean 'Y' leaf N was found to be significantly higher at 33 hills m-2 (45.1 g kg-1), while the other two densities were on par (42.9 g kg-1). When N application was based on chlorophyll meter (SPAD) values the leaf N concentration was maintained at a level of 39.2 to 51.9 g kg-1 to produce maximum grain yield. A significant correlation was observed between the chlorophyll meter values and 'Y' leaf N concentrations at various days after transplanting (r values ranged from 0.57* to 0.83**), while the correlation was highly significant during the major physiological growth stages. Though the 'Y' leaf content was significantly higher in the treatment involving Sesbania rostrata green manuring + 150 kg N applied in splits, the grain yield produced was on par in all the N applied treatments. A highly significant correlation was observed between the grain yield and both 'Y' leaf N content and SPAD values during various growth periods.


2006 ◽  
Vol 86 (4) ◽  
pp. 1107-1118 ◽  
Author(s):  
Abdo Badra ◽  
Léon-Étienne Parent ◽  
Guy Allard ◽  
Nicolas Tremblay ◽  
Yves Desjardins ◽  
...  

A 3-yr field study was conducted in a loam and a sand site to determine the effects of N, P, and K application rates on N status, shoot density and foliage colour of Kentucky bluegrass clippings and to derive critical N values. The experiment was arranged in a completely randomized block design with four replicates and three nutrients, N (0 or 50 to 300 kg ha-1 yr-1), P (0 or 21.8 to 87.3 kg P ha-1 yr-1), and K (0 or 41.7 to 250 kg K ha-1 yr-1), equally broadcast six times per growing season. We examined N concentration values, log-transformed N concentration values, and CND values for compositional nutrient simplexes comprising one (VN1), three (VN3), five (VN5), or 11 (VN11) macro- and micro-nutrients. Critical values for N expressions were obtained from linear relationships with targeted visual shoot density and foliage colour ratings that were closely related to each other (R2 = 0.92). The highest coefficients of determination (0.975 to 0.980) were obtained with VN5 and VN11. The VN5 values were consistent with literature data and across experimental sites, and were the most successful (99% success) in diagnosing N sufficiency in 328 qualified specimens from commercial sod farms. Compared with raw concentrations, the CND transformation reduced from 0.6 to 0.1 the degree of inter-correlation among nutrients in principal component analysis and was amenable to a χ2 distribution of CND indices. Using a critical imbalance index (CNDr2) of 5.6as χ2 value, and a critical CND IN2 index of 1.5 for a 5-nutrient simplex, we diagnosed as imbalanced 179 qualified specimens of which 110 specimens presented excessively high N level among the 328 qualified specimens in commercial stands. The proposed five-nutrient CND norms proved to be effective in diagnosing N status in Kentucky bluegrass clippings across experimental, literature, and survey data sets. Key words: Plant tissue nutrient diagnosis, DRIS, CND, Kentucky bluegrass nitrogen fertilization, turfgrass shoot density, turfgrass foliage colour


HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Yun-wen Wang ◽  
Bruce L. Dunn ◽  
Daryl B. Arnall ◽  
Pei-sheng Mao

This research was conducted to investigate the potentials of normalized difference vegetation index (NDVI), a Soil-Plant Analyses Development (SPAD) chlorophyll meter, and leaf nitrogen (N) concentration [% dry matter (DM)] for rapid determination of N status in potted geraniums (Pelargonium ×hortorum). Two F1 cultivars were chosen to represent a dark-green leaf cultivar, Horizon Deep Red, and a light-green leaf cultivar, Horizon Tangerine, and were grown in a soilless culture system. All standard 6-inch (15.24-cm) pots filled with a medium received an initial top-dress application of 5 g controlled-release fertilizer (15N–9P–12K), then plants were supplemented with additional N in the form of urea at 0, 50, 100, or 200 mg·L−1 N every few days to produce plants ranging from N-deficient to N-sufficient. The NDVI readings of individual plants from a NDVI pocket sensor developed by Oklahoma State University were collected weekly until the flowering stage. Data on flower traits, including number of pedicels (NOP), number of full umbels per pot (NOFU), total number of flowers per pot (TNF), number of flowers per pedicel (NOF), and inflorescences diameter (IFD), were collected 3 months after initial fertilizer treatment. After measuring flower traits, pedicels were removed from each pot, and SPAD value, NDVI, and leaf N concentration (g·kg−1 DM) were measured simultaneously. Cultivar and N rate significantly affected all but two flower and one N status parameters studied. The coefficient of determination R2 showed that NOP, NOFU, and TNF traits were more related to the N rates and the status parameters studied for ‘Horizon Tangerine’ than for ‘Horizon Deep Red’. For the latter cultivar, NOP and TNF traits were highly related to NDVI and SPAD values than N rates and leaf N content parameters. Correlation analysis indicated that the NDVI readings (R2 = 0.848 and 0.917) and SPAD values (R2 = 0.861 and 0.950) were significantly related to leaf N content (g·kg−1 DM) between cultivars. However, sensitivity of the NDVI and chlorophyll values to N application rate in geranium was slightly less than leaf N content. Strong correlations (R2 = 0.974 and 0.979, respectively) between NDVI and SPAD values were found within cultivars. The results demonstrated NDVI and SPAD values can be used to estimate N status in geranium. Because the pocket NDVI sensor will be cheaper than the SPAD unit, it has an advantage in determining N content in potted ornamentals.


1995 ◽  
Vol 75 (1) ◽  
pp. 179-182 ◽  
Author(s):  
L. M. Dwyer ◽  
D. W. Stewart ◽  
E. Gregorich ◽  
A. M. Anderson ◽  
B. L. Ma ◽  
...  

Chlorophyll meters have been used to provide a rapid non-destructive method to estimate corn leaf nitrogen (N) concentration, although meter readings plateau at high leaf N levels. Paired chlorophyll meter and leaf N concentration data were obtained for ear level leaves at growth stages ranging from 3 wk before anthesis to 5 wk after anthesis over a 2-yr period at Ottawa, Ontario. Separate quadratic-plus-plateau models best represented chlorophyll meter response to leaf N concentration for pre-anthesis, early grain-fill and late grain-fill stages; chlorophyll meter readings corresponding to the beginning of the plateau increased at later growth stages. Leaf N concentration was estimated well from chlorophyll meter readings up to the plateau range using growth stage specific functions (R2 ≥ 0.77) but chlorophyll meter readings beyond the plateau should not be used to estimate leaf N concentration. Key words: Chlorophyll meter calibration, maize


1994 ◽  
Vol 34 (6) ◽  
pp. 835 ◽  
Author(s):  
JK Olsen ◽  
DJ Lyons

This study was conducted to assess the usefulness of petiole sap nitrate and total nitrogen (N) in dried leaf for determining N status and yield response in capsicum (Capsicum annuum L.) grown with plastic mulch and trickle irrigation in subtropical Australia. Five rates of N (0, 70, 140,210, 280 kg/ha) were applied in factorial combination with 2 rates of potassium (K: 0, 200 kg/ha) in randomised block experiments to capsicum cv. Bell Tower grown at Bundaberg Research Station in spring 1990 and autumn 1991. Critical nutrient ranges for nitrate concentration in petiole sap and for total N concentration in dried youngest mature leaf blades plus petioles (YMB + P) were derived at different stages of crop development (bud development, BD; first anthesis, FA; 80% flowering, F; fruit set, FS). Sap nitrate was about 5 times more sensitive to changes in N application than total N. Petiole sap nitrate accounted for a greater amount of the variation in marketable fruit yield (quadratic square root relationships, 0.45 < R2 < 0.83) than total N concentration in dried YMB + P (linear relationships, 0.29 < R2 < 0.74). Simple linear regressions indicated a stronger relationship between applied N and petiole sap nitrate concentration than total N concentration in dried YMB + P (range in R2 values among 8 sampling events: 0.71-0.91 for petiole sap nitrate, 0.35-0.78 for YMB + P total N). For the fertiliser application strategy, 60% of N was applied pre-fruitset and 40% after. Sap nitrate concentrations associated with 95 and 100% of maximum marketable fruit yield increased from BD (5010-6000 mg/L spring, 4980-5280 mg/L autumn) to FA (6220-7065 mg/L spring, 555M000 mg/L autumn). After FA, the range progressively decreased to 1640-2800 and 520-1220 mg/L at FS, for spring and autumn, respectively. It was concluded that petiole sap nitrate was a better indicator of plant N status and yield response than total N concentration in dried YMB + P for capsicum in subtropical Australia. A critical petiole sap K concentration (corresponding with maximum yield and at which no yield response to K addition was measured) of >4800 mg/L was proposed by correlating sap K with yield responses.


2006 ◽  
Vol 86 (4) ◽  
pp. 1037-1046 ◽  
Author(s):  
Yan Zhu ◽  
Yingxue Li ◽  
Wei Feng ◽  
Yongchao Tian ◽  
Xia Yao ◽  
...  

Non-destructive monitoring of leaf nitrogen (N) status can assist in growth diagnosis, N management and productivity forecast in field crops. The objectives of this study were to determine the relationships of leaf nitrogen concentration on a leaf dry weight basis (LNC) and leaf nitrogen accumulation per unit soil area (LNA) to ground-based canopy reflectance spectra, and to derive regression equations for monitoring N nutrition status in wheat (Triticum aestivum L.). Four field experiments were conducted with different N application rates and wheat cultivars across four growing seasons, and time-course measurements were taken on canopy spectral reflectance, LNC and leaf dry weights under the various treatments. In these studies, LNC and LNA in wheat increased with increasing N fertilization rates. The canopy reflectance differed significantly under varied N rates, and the pattern of response was consistent across the different cultivars and years. Overall, an integrated regression equation of LNC to normalized difference index (NDI) of 1220 and 710 nm of canopy reflectance spectra described the dynamic pattern of change in LNC in wheat. The ratios of several near infrared (NIR) bands to visible light were linearly related to LNA, with the ratio index (RI) of the average reflectance over 760, 810, 870, 950 and 1100 nm to 660 nm having the best index for quantitative estimation of LNA in wheat. When independent data were fit to the derived equations, the average root mean square error (RMSE) values for the predicted LNC and LNA relative to the observed values were no more than 15.1 and 15.2%, respectively, indicating a good fit. Our relationships of leaf N status to spectral indices of canopy reflectance can be potentially used for non-destructive and real-time monitoring of leaf N status in wheat. Key words: Wheat, leaf nitrogen concentration, leaf nitrogen accumulation, canopy reflectance, spectral index, nitrogen monitoring


Sign in / Sign up

Export Citation Format

Share Document