scholarly journals Rat subcutaneous tissue response to MTA Fillapex® and Portland cement

2013 ◽  
Vol 24 (1) ◽  
pp. 10-14 ◽  
Author(s):  
Nádia Carolina Teixeira Marques ◽  
Natalino Lourenço Neto ◽  
Ana Paula Fernandes ◽  
Camila de Oliveira Rodini ◽  
Marco Antônio Hungaro Duarte ◽  
...  

The aim of this study was to evaluate the response of rat subcutaneous tissue to MTA Fillapex® (Angelus), an experimental root canal filling material based on Portland cement and propylene glycol (PCPG), and a zinc oxide, eugenol and iodoform (ZOEI) paste. These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were stained with hematoxylin and eosin, and evaluated regarding inflammatory reaction parameters by optical microscopy. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated examiners for all experimental periods (kappa=0.96). The histological evaluation showed that all materials caused a moderate inflammatory reaction at 7 days, which subsided with time. A greater inflammatory reaction was observed at 7 days in the tubes filled with ZOEI paste. Tubes filled with MTA Fillapex presented some giant cells, macrophages and lymphocytes after 7 days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The tubes filled with PCPG showed similar results to those observed in MTA Fillapex. At 15 days, the inflammatory reaction was almost absent at the tissue, with several collagen fibers indicating normal tissue healing. Data were analyzed by the nonparametric Kruskal-Wallis test (α=0.05). Statistically significant difference (p<0.05) was found only between PCPG at 15 days and ZOEI at 7 days groups. No significant differences were observed among the other groups/periods (p>0.05). MTA Fillapex and Portland cement added with propylene glycol had greater tissue compatibility than the PCPG paste.

2010 ◽  
Vol 21 (6) ◽  
pp. 482-490 ◽  
Author(s):  
Tania Mary Cestari ◽  
Rodrigo Cardoso de Oliveira ◽  
Jefferson Tomio Sanada ◽  
Gustavo Pompermaier Garlet ◽  
Rumio Taga ◽  
...  

The aim of this study was to morphometrically analyze the tissue response to a customized pin obtained from devitalized bovine cortical bone (DBCB-pin) implanted in the subcutaneous tissue of rats, as well as to assess its microstructural aspect by scanning electron microscopy (SEM). The pins were implanted in the subcutaneous tissue of 20 rats, which were killed at 7, 14, 28 and 60 days (5 rats/period) after implantation. In the subcutaneous tissue, DBCB-pin promoted the formation of a fibrous capsule. At 7 days, capsule showed thickness of 70 ± 3.2 µm with higher density of newly formed capillaries and smaller density of collagen fibers. Between 14 and 60 days, more organized fibrous capsule exhibited smaller thickness (53 ± 5.5 µm) with higher density of fibroblasts and collagen fibers. In this period, a small and slow bioresorption of the DBCB-pin by macrophages and rare multinucleated giant cells without tissue damage was observed. The thickness of DBCB-pin resorbed was in mean only of 9.3 µm. During all experimental periods not occurred presence of immune reaction cells as lymphocytes and plasma cells. It was concluded that the pin derived from cortical bovine bone was well tolerated by subcutaneous tissue of rats and slowly resorbed could be an alternative material for membrane fixation in the guided tissue regeneration procedures.


2017 ◽  
Vol 145 (7-8) ◽  
pp. 370-377 ◽  
Author(s):  
Vanja Opacic-Galic ◽  
Violeta Petrovic ◽  
Vukoman Jokanovic ◽  
Slavoljub Zivkovic

Introduction/Objective. Development of materials which could be used as biological bone substitutes is one of the most valuable and active fields of biomaterial research. The goal of the study was to research the reaction of tissue on calcium silicate- (CS) and hydroxyapatitebased (CS-HA) newly synthesized nanomaterials, after being implanted into the subcutaneous tissue of a rats and direct pulp capping of rabbit teeth. Methods. The tested materials were implanted in 40 Wistar male rats, sacrificed after seven, 15, 30, and 60 days. The direct pulp capping was performed on the teeth of rabbits. Cavities were prepared on the vestibular surface of the incisors. The animals were sacrificed after 10 and 15 days. The control material was mineral trioxide aggregate (MTA). Histological analysis covered the tracking of inflammatory reaction cellular components, presence of gigantic cells, and necrosis of the tissue. Results. Seven days after the implantation, the strongest inflammatory response was given by the MTA (3.3 ?} 0.48), while CS and CS-HA scored 3 ? 0.71. After 60 days, the rate of inflammatory reactions dropped, which was the least visible with CS-HA (0.2 ? 0.45). The least visible inflammatory reaction of the rabbits? pulp tissue was spotted with the CS (1.83 ? 0.75), than with the MTA and CS-HA (2.67 ? 1.53, 3 ? 0.63). Conclusion. The newly synthesized materials caused a slight reaction of the subcutaneous tissue. CS-HA showed the best tissue tolerance. Nanostructural biomaterials caused a slight to moderate inflammatory reaction of the rabbits? pulp tissue only in the immediate vicinity of the implanted material.


2009 ◽  
Vol 20 (2) ◽  
pp. 112-117 ◽  
Author(s):  
Ricardo Martínez Lalis ◽  
María Laura Esaín ◽  
Gabriel A. Kokubu ◽  
Julia Willis ◽  
Carolina Chaves ◽  
...  

The purpose of this study was compare the biocompatibility of modified Portland cement (CPM) and mineral trioxide aggregate (MTA) in a subcutaneous rat model. Twenty-four male Wistar rats were used. Three silicon tubes were placed on the dorsal subcutaneous tissue of each animal: one tube contained MTA, one tube contained CPM and the other was an empty tube. The rats were sacrificed in 3 groups of 8 animals at 7, 14 and 30 postoperative days, respectively. Tissue samples were fixed in 10% buffered formalin, embedded in paraffin, and serial sections were cut and stained with hematoxylin and eosin, Masson Trichrome and Luna's stain. At day 7, the empty tubes displayed a mild inflammatory infiltrate. In the CPM group, an inflammatory infiltrate was observed with some eosinophils and immature connective tissue. The MTA group showed a similar infiltrate without eosinophils and presence of abundant necrotic tissue and numerous multinucleate foreign body giant cells. At day 14, the chronic infiltrate with eosinophils persisted when in contact with CPM. In the MTA group, necrosis and distant giant cells could still be seen. At day 30, all 3 groups showed mature fibrous collagenous tissue. These findings indicate a different response to the materials evaluated in this study. Although, MTA and CPM induced a chronic inflammatory infiltrate, necrosis and multinucleated foreign body giant cells predominated in the MTA group, while in the CPM group numerous eosinophils were seen at all the observational periods.


1995 ◽  
Vol 109 (1) ◽  
pp. 14-18 ◽  
Author(s):  
Peng-Cheng Cui ◽  
Katsuichiro Ohsaki ◽  
Kunio Ii ◽  
Satoru Tenshin ◽  
Terushige Kawata

AbstractA study was carried out in order to obtain further information about the soft tissue response to thin Apaceram® discs of dense hydroxyapatite (HA) implanted in rats for various periods of time between one day and 10 months. The Apaceram® discs were implanted subcutaneously into the interscapular region of 33 rats. A sham operation was performed on eight rats used as controls. Decalcified histological sections stained with haematoxylin and eosin and Mallory's azan were examined and the different cell types found around the implants were counted. It was found that an acute inflammatory reaction occurred after one day and disappeared at about two weeks after implantation. In the test groups, macrophages and lymphocytes disappeared about one week later, and no inflammatory reaction was observed from one to three months. However, a tissue reaction occurred at six months with the appearance of macrophages and lymphocytes, and decreased gradually at 10 months. Meanwhile, a few foreign body giant cells at the Apaceram®-tissue interface and a thick layer of fibrous connective tissue around the Apaceram® disc were observed at 10 months. No osteogenesis was observed in any specimen. The results obtained so far suggest that Apaceram® is still a useful material for reconstructive surgery, despite the possible appearance of a slight macrophage reaction at six months.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 24
Author(s):  
João Miguel Santos ◽  
Carolina M. Coelho ◽  
Diana B. Sequeira ◽  
Joana A. Marques ◽  
Joana F. Pereira ◽  
...  

Calcium silicate-based sealers were recently introduced as a new class of endodontic sealers, with potential further benefits due to their bioactivity. The aim of this study was to evaluate the biocompatibility of two new hydraulic calcium silicate-based sealers, TotalFill BC Sealer (FKG, La Chaux-des-Fonds, Switzerland) and TotalFill BC Sealer HiFlow (FKG, La Chaux-des-Fonds, Switzerland) through subcutaneous implantation in connective tissue of rats. Subcutaneous implantation was performed in 16 young Wistar rats. Four polyethylene tubes were implanted in each animal, one empty to serve as a control, and three filled with tested sealers: AH Plus as reference (Dentsply DeTrey, Konstanz, Germany), TotalFill BC Sealer (BC) and TotalFill BC Sealer HiFlow (HiFlow). Eight rats were euthanized at 8 days and the remaining eight at 30 days. Hematoxylin-eosin staining was used to score the inflammatory reaction, macrophage infiltrate and to measure the thickness of the fibrous capsule. von Kossa staining was performed to evaluate the mineralization level. Kruskal–Wallis test followed by Dunn’s post hoc test was used to analyze non-parametric data. To analyze the influence of the implantation time within each material, a Mann–Whitney U test was performed. At eight days post-implantation, AH Plus induced a more intense inflammatory reaction when compared both with the control (p ≤ 0.001) and BC (p ≤ 0.01). HiFlow presented a higher score of macrophage infiltrate than control (p ≤ 0.01) and BC (p ≤ 0.05). The fibrous capsule thickness in this period was significantly higher for the BC group when compared to control (p ≤ 0.01) and AH Plus (p ≤ 0.05). The mineralization potential was higher for the HiFlow group when compared with the control (p ≤ 0.001) and AH Plus (p ≤ 0.001). At 30 days post-implantation, the score for the inflammatory reaction remained higher for the AH Plus group when compared both to control (p ≤ 0.01) and BC (p ≤ 0.001). The macrophage infiltrate of the HiFlow was significantly higher than control (p ≤ 0.001) and AH Plus groups (p ≤ 0.01), additionally, the fibrous capsule of the BC (p ≤ 0.001) and HiFlow (p ≤ 0.01) groups were both thicker than control. Mineralization potential was observed only on BC (p ≤ 0.05) and HiFlow groups (p ≤ 0.001), when compared to control). BC exhibited the best biocompatibility performance of all tested sealers and HiFlow provided the greatest induction of mineralized tissues. Both TotalFill BC Sealer and TotalFill BC Sealer HiFlow are biocompatible and show potential bioactivity when implanted in the subcutaneous tissue. Bioactivity was not found in AH Plus.


2016 ◽  
Vol 695 ◽  
pp. 247-251
Author(s):  
Alexandru Andrei Iliescu ◽  
Cristian Marian Petcu ◽  
Ileana Cristiana Petcu ◽  
Irina Maria Gheorghiu ◽  
Andrei Iliescu ◽  
...  

The retrograde filling is a critical step to a successful outcome of the endodontic surgery. Despite the progress in the technology of novel root-end filling materials, zinc oxide-eugenol cement superEBA is still preserving its clinical value on long-term basis. The study aimed to reconsider the tissue response to the initial irritating effect of this material. Silicon tubes filled with superEBA were subcutaneously implanted for 120 days in white Wistar rats which were afterwards sacrificed. The connective tissue surrounding the superEBA implants revealed fibroblast proliferation and a definite reparatory process without inflammatory reaction. A non-specific tissue healing in progress around the implants, without calcifications, necrosis, and apoptosis was also described after 4 months. SuperEBA proved on animal model that its cytotoxicity is reducing gradually in time until no adverse reaction is observed. The reduced content in eugenol compared to other surgical zinc oxide cements and the benefic effect of o-ethoxybenzoic acid are the support to reconsider SuperEBA as a biocompatible retrograde filling material.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1993 ◽  
Author(s):  
Kunio Ishikawa ◽  
Youji Miyamoto ◽  
Akira Tsuchiya ◽  
Koichiro Hayashi ◽  
Kanji Tsuru ◽  
...  

Three commercially available artificial bone substitutes with different compositions, hydroxyapatite (HAp; Neobone®), carbonate apatite (CO3Ap; Cytrans®), and β-tricalcium phosphate (β-TCP; Cerasorb®), were compared with respect to their physical properties and tissue response to bone, using hybrid dogs. Both Neobone® (HAp) and Cerasorb® (β-TCP) were porous, whereas Cytrans® (CO3Ap) was dense. Crystallite size and specific surface area (SSA) of Neobone® (HAp), Cytrans® (CO3Ap), and Cerasorb® (β-TCP) were 75.4 ± 0.9 nm, 30.8 ± 0.8 nm, and 78.5 ± 7.5 nm, and 0.06 m2/g, 18.2 m2/g, and 1.0 m2/g, respectively. These values are consistent with the fact that both Neobone® (HAp) and Cerasorb® (β-TCP) are sintered ceramics, whereas Cytrans® (CO3Ap) is fabricated in aqueous solution. Dissolution in pH 5.3 solution mimicking Howship’s lacunae was fastest in CO3Ap (Cytrans®), whereas dissolution in pH 7.3 physiological solution was fastest in β-TCP (Cerasorb®). These results indicated that CO3Ap is stable under physiological conditions and is resorbed at Howship’s lacunae. Histological evaluation using hybrid dog mandible bone defect model revealed that new bone was formed from existing bone to the center of the bone defect when reconstructed with CO3Ap (Cytrans®) at week 4. The amount of bone increased at week 12, and resorption of the CO3Ap (Cytrans®) was confirmed. β-TCP (Cerasorb®) showed limited bone formation at week 4. However, a larger amount of bone was observed at week 12. Among these three bone substitutes, CO3Ap (Cytrans®) demonstrated the highest level of new bone formation. These results indicate the possibility that bone substitutes with compositions similar to that of bone may have properties similar to those of bone.


Sign in / Sign up

Export Citation Format

Share Document