scholarly journals Light Transmittance and Depth of Cure of a Bulk Fill Composite Based on the Exposure Reciprocity Law

2021 ◽  
Vol 32 (1) ◽  
pp. 78-84
Author(s):  
Mateus Garcia Rocha ◽  
Jean-François Roulet ◽  
Mario Alexandre Coelho Sinhoreti ◽  
Américo Bortolazzo Correr ◽  
Dayane Oliveira

Abstract The objective of this study was to evaluate the effect of the exposure reciprocity law of a multi-wave light-emitting diode (LED) on the light transmittance (LT), depth of cure (DOC) and degree of conversion in-depth (DC) of a bulk fill composite. A bulk fill composite (EvoCeram® bulk fill, Ivoclar Vivadent) was photoactivated using the multi-wave LED (VALO™ Cordless, Ultradent). The LED was previously characterized using a spectrophotometer to standardize the time of exposure when using the Standard or Xtra-Power modes with the same radiant exposure of 20J/cm2. LT was evaluated through samples of the bulk fill composite every millimeter till 4 mm in-depth. DOC was evaluated according to the ISO 4049. DC of the central longitudinal cross-section from each sample of the DOC test was mapped using FT-NIR microscopy. Data were statistically analyzed according to the experimental design (α=0.05; ß=0.2). The radiant exposure in the violet wavelength range for Standard and Xtra-Power was 4.5 and 5.0 J/cm2, respectively; for the blue wavelength range the radiant exposure for Standard and Xtra-Power was 15.5 and 15.0 J/cm2, respectively. There was no statistical difference in the DOC using Standard or Xtra-Power light-curing modes, but the DOC was lower than the claimed by the manufacturer (4 mm). The DC was not significantly affected by the light-curing mode up to 4 mm in depth (p>0.05). According to exposure reciprocity law, the reduction in exposure time using the same radiant exposure did not affect the depth of cure of the bulk fill composite.

2019 ◽  
Vol 44 (3) ◽  
pp. E133-E144 ◽  
Author(s):  
AO Al-Zain ◽  
GJ Eckert ◽  
JA Platt

SUMMARY Objectives: To investigate the influence of curing distance on the degree of conversion (DC) of a resin-based composite (RBC) when similar radiant exposure was achieved using six different light-curing units (LCUs) and to explore the correlation among irradiance, radiant exposure, and DC. Methods and Materials: A managing accurate resin curing-resin calibrator system was used to collect irradiance data for both top and bottom specimen surfaces with a curing distance of 2 mm and 8 mm while targeting a consistent top surface radiant exposure. Square nanohybrid-dual-photoinitiator RBC specimens (5 × 5 × 2 mm) were cured at each distance (n=6/LCU/distance). Irradiance and DC (micro-Raman spectroscopy) were determined for the top and bottom surfaces. The effect of distance and LCU on irradiance, radiant exposure, and DC as well as their linear associations were analyzed using analysis of variance and Pearson correlation coefficients, respectively (α=0.05). Results: While maintaining a similar radiant exposure, each LCU exhibited distinctive patterns in decreased irradiance and increased curing time. No significant differences in DC values (63.21%-70.28%) were observed between the 2- and 8-mm distances, except for a multiple-emission peak LCU. Significant differences in DC were detected among the LCUs. As expected, irradiance and radiant exposure were significantly lower on the bottom surfaces. However, a strong correlation between irradiance and radiant exposure did not necessarily result in a strong correlation with DC. Conclusions: The RBC exhibited DC values >63% when the top surface radiant exposure was maintained, although the same values were not reached for all lights. A moderate-strong correlation existed among irradiance, radiant exposure, and DC.


2019 ◽  
Vol 44 (1) ◽  
pp. 96-107 ◽  
Author(s):  
GA Maghaireh ◽  
RB Price ◽  
N Abdo ◽  
NA Taha ◽  
H Alzraikat

SUMMARY Objectives: This study compared light transmission through different thicknesses of bulk-fill resin-based composites (RBCs) using a polywave and a single-peak light-emitting diode light-curing unit (LCU). The effect on the surface hardness was also evaluated. Methods: Five bulk-fill RBCs were tested. Specimens (n=5) of 1-, 2-, 4-, or 6-mm thickness were photopolymerized for 10 seconds from the top using a polywave (Bluephase Style) or single–peak (Elipar S10) LCU, while a spectrophotometer monitored in real time the transmitted irradiance and radiant exposure reaching the bottom of the specimen. After 24 hours of storage in distilled water at 37°C, the Vickers microhardness (VH) was measured at top and bottom. Results were analyzed using multiple-way analysis of variance, Tukey post hoc tests, and multivariate analysis (α=0.05). Results: The choice of LCU had no significant effect on the total amount of light transmitted through the five bulk-fill RBCs at each thickness. There was a significant decrease in the amount of light transmitted as the thickness increased for all RBCs tested with both LCUs (p<0.001). Effect of LCU on VH was minimal (ηp2=0.010). The 1-, 2-, and 4-mm-thick specimens of SDR, X-tra Fill, and Filtek Bulk Restorative achieved a VHbottom/top ratio of approximately 80% when either LCU was used. Conclusions: The total amount of light transmitted through the five bulk-fill RBCs was similar at the different thicknesses using either LCU. The polywave LCU used in this study did not enhance the polymerization of the tested bulk-fill RBCs when compared with the single-peak LCU.


2011 ◽  
Vol 14 (2) ◽  
pp. 136 ◽  
Author(s):  
BatuCan Yaman ◽  
Can Dörter ◽  
Dina Erdilek ◽  
BegümGüray Efes ◽  
Yavuz Gömeç ◽  
...  

2008 ◽  
Vol 9 (4) ◽  
pp. 43-50 ◽  
Author(s):  
Cesar Henrique Zanchi ◽  
Flávio Fernando Demarco ◽  
Camila Silveira de Araújo ◽  
Marcelo Thomé Schein ◽  
Sinval Adalberto Rodrigues

Abstract Aim The aim of this study was to investigate the influence of light curing method, composite shade, and depth of cure on composite microhardness. Methods and Materials Forty-eight specimens with 4 mm of depth were prepared with a hybrid composite (Filtek Z-100, 3M ESPE); 24 with shade A1 and the remaining with shade C2. For each shade, two light curing units (LCUs) were used: a quartz-tungsten-halogen (QTH) LCU (Optilight Plus - Gnatus) and a light emitting diode (LED) LCU (LEC 470 II - MM Optics). The LED LCU was tested using two exposure times (LED 40 seconds and LED 60 seconds). After 24-hour storage, three indentations were made at mm depth intervals using a Knoop indenter. Data were submitted to three-way analysis of variance (ANOVA) and Tukey's test (p<0.05). Results The three factors tested (light curing method, shade, and depth) had a significant influence on the composite microhardness (p<0.05). All groups presented similar hardness values in the first mm, except for composite shade C2 cured with LED for 40 seconds. The hardness decreased with depth, especially for shade C2 for 40 seconds. Increasing light-curing time with LED produced hardness values similar to the QTH. Conclusions The light curing method including variations of time, the depth of cure, and the composite shade influence the composite microhardness. Clinical Significance Clinicians should avoid thicker increments when working with composite restorations. Extended light-curing time might be indicated depending on the composite shade and on the light-curing device. Citation de Araújo CS, Schein MT, Zanchi CH, Rodrigues SA Jr, Demarco FF. Composite Resin Microhardness: The Influence of Light Curing Method, Composite Shade, and Depth of Cure. J Contemp Dent Pract 2008 May; (9)4:043-050.


2018 ◽  
Vol 43 (4) ◽  
pp. 398-407 ◽  
Author(s):  
CB André ◽  
G Nima ◽  
M Sebold ◽  
M Giannini ◽  
RB Price

SUMMARYObjectives: This study evaluated the light output from six light-emitting diode dental curing lights after 25 consecutive light exposures without recharging the battery, tip accessibility in the posterior region, and light beam spread from light-curing units.Methods: Irradiance, spectral peak, and radiant exposure were measured with the battery fully charged (Bluephase Style, ESPE Cordless, Elipar S10, Demi Ultra, Valo Cordless, and Radii-Cal) and monitored for 25 light exposures (each lasting 10 seconds). The tip diameter was measured to identify the beam size and the ability of the six light-curing units to irradiate all areas of the lower second molar in the standard output setting.Results: Four curing lights delivered a single peak wavelength from 454 to 462 nm, and two (Bluephase Style and Valo Cordless) delivered multiple emission peaks (at 410 and 458 nm and 400, 450, and 460 nm, respectively). The irradiance and radiant exposure always decreased after 25 exposures by 2% to 8%, depending on the light unit; however, only ESPE Cordless, Valo Cordless, and Radii-Cal presented a statistical difference between the first and the last exposure. The tip diameter ranged from 6.77 mm to 9.40 mm. The Radii-Cal delivered the lowest radiant exposure and irradiance. This light was also unable to access all the teeth with the tip parallel to the occlusal surface of the tooth.Conclusion: Not all of the blue-emitting lights deliver the same emission spectra, and some curing lights delivered a lower irradiance (as much as 8% lower) after the 25th exposure.


2008 ◽  
Vol os15 (4) ◽  
pp. 147-152 ◽  
Author(s):  
Stephen M Dunne ◽  
Brian J Millar

Aims While light-activating composite resins, the light tip may not always be close to the surface of the restoration. This may be intentional in an attempt to create a ramp cure. The aim of this study was to determine the effect of a range of separation distances between the light tip and the restoration surface on the depth of composite cure for different types of light-curing units with a broad range of outputs. Methods Three halogen light units, one plasma arc-curing (PAC) light unit and two light-emitting diode (LED) curing lights in clinical use were tested, and a total of 570 restorations cured in a two-part human tooth model at separations ranging from 0 to 15 mm. The tooth was disassembled and depth of cure determined using the scrape test ISO 4049. Light intensity was also measured at each separation distance for each light. Results The depth of cure was generally found to decrease as the separation distance increased for all lights at the various cure times. However, the effect of increasing the separation distance was less than anticipated. The depth of cure was also related to the light output. Conclusions Depth of composite cure was directly related to intensity and duration of light exposure and inversely related to distance of the light source from the surface for halogen and plasma lights. However, the effect of increasing the separation distance up to 15 mm was less than expected. Altering the separation distance in order to modify the polymerisation characteristics is unlikely to be effective.


2018 ◽  
Vol 9 ◽  
pp. 158
Author(s):  
Ellyza Herda ◽  
Nadia Safira Ninda ◽  
Mia Damiyanti

Objective: This study aimed to identify post-cure’s effect on the depth of cure (DOC) of a short fiber-reinforced resin composite (SFRC).Methods: Six EverX PosteriorTM shade A3 specimens were cured with a light-emitting diode light curing unit with 800 mW/cm2 of light irradiation for 20 s. The specimens were divided into two groups. The first was measured immediately post-cure and the second was measured 24-h post-cure. They were measured with a Vickers microhardness profile test. An independent t-test was used to analyze the significance of the differences between the DOC value and different variables.Results: The DOC of the specimens measured immediately post-cure was 3.02±0.02 mm. The DOC of the specimens measured 24-h post-cure was 3.93±0.03 mm.Conclusion: The DOC of the specimens measured 24-h post-cure was significantly higher than the DOC of the specimens measured immediately post-cure. Post-cure polymerization (24-h post-cure) can increase the DOC values of an SFRC.


2003 ◽  
Vol 200 (1) ◽  
pp. 102-105 ◽  
Author(s):  
Hisao Sato ◽  
Hong-Xing Wang ◽  
Daisuke Sato ◽  
Ryohei Takaki ◽  
Naoki Wada ◽  
...  

2018 ◽  
Vol 89 (10) ◽  
pp. 1964-1974
Author(s):  
Yi Huang ◽  
Guangdong Sun ◽  
Yating Ji ◽  
Dapeng Li ◽  
Qinguo Fan ◽  
...  

A blue light curing process was developed to solve the nozzle clogging challenge commonly encountered in conventional textile pigment printing, by using camphorquinone (CQ) and ethyl-4-dimethylaminobenzoate (EDMAB) as a photoinitiator combination and substituting oligomers and monomers for a polymeric binder. High light absorption efficiency was insured by closely matching the spectrum of the photoinitiator with a custom-made blue light light-emitting diode set-up. Kinetic analyses of such a CQ/EDMAB system indicated that the maximum polymerization rate of the monomer was proportional to [PI]0.5 and [I0]0.5, while excessive high photoinitiator concentration (>1 wt%) will decrease the polymerization rate because of the “filter effect.” With optimized blue light curable pigment ink formula and irradiation conditions, the photocurable pigment printed fabrics exhibited uniform and vibrant colors, clear outlines, and excellent wet and dry rubbing fastness of grades 4 and 4–5, respectively.


2009 ◽  
Vol 79 (1) ◽  
pp. 144-149 ◽  
Author(s):  
Mustafa Ulker ◽  
Tancan Uysal ◽  
Sabri Ilhan Ramoglu ◽  
Huseyin Ertas

Abstract Objective: To compare the microleakage of the enamel-adhesive-bracket complex at the occlusal and gingival margins of brackets bonded with high-intensity light curing lights and conventional halogen lights. Materials and Methods: Forty-five freshly extracted human maxillary premolar teeth were randomly separated into three groups of 15 teeth each. Stainless steel brackets were bonded in all groups according to the manufacturer's recommendations. Specimens (15 per group) were cured for 40 seconds with a conventional halogen light, 20 seconds with light-emitting diode (LED), and 6 seconds with plasma arc curing light (PAC). After curing, the specimens were further sealed with nail varnish, stained with 0.5% basic-fuchsine for 24 hours, sectioned and examined under a stereomicroscope, and scored for microleakage for the enamel-adhesive and bracket-adhesive interfaces from both the occlusal and gingival margins. Statistical analyses were performed using Kruskal-Wallis and Mann-Whitney U-tests with a Bonferroni correction. Results: The type of light curing unit did not significantly affect the amount of microleakage at the gingival or occlusal margins of investigated interfaces (P &gt;.05). The gingival sides in the LED and PAC groups exhibited higher microleakage scores compared with those observed on occlusal sides for the enamel-adhesive and adhesive-bracket interfaces. The halogen light source showed similar microleakage at the gingival and occlusal sides between both adhesive interfaces. Conclusions: High-intensity curing units did not cause more microleakage than conventional halogen lights. This supports the use of all these curing units in routine orthodontic practice.


Sign in / Sign up

Export Citation Format

Share Document