scholarly journals Soil factors effects on life history attributes of Leiothrix spiralis and Leiothrix vivipara (Eriocaulaceae) on rupestrian grasslands in Southeastern Brazil

2014 ◽  
Vol 74 (4) ◽  
pp. 828-836 ◽  
Author(s):  
FF Coelho ◽  
RP Martins ◽  
JEC Figueira ◽  
GR Demetrio

In this study, we hypothesized that the life history traits of Leiothrix spiralis and L. vivipara would be linked to soil factors of the rupestrian grasslands and that rosette size would be influenced by soil moisture. Soil analyses were performed from five populations of L. spiralis and four populations of L. vivipara. In each area, three replicates were employed in 19 areas of occurrence of Leiothrix species, and we quantified the life history attributes. The microhabitats of these species show low favorability regarding to soil factors. During the dry season, their rosettes decreased in diameter due the loss of its most outlying leaves. The absence of seedlings indicated the low fecundity of both species. However, both species showed rapid population growth by pseudovivipary. Both L. spiralis and L. vivipara exhibit a kind of parental care that was quantified by the presence of connections between parental-rosettes and ramets. The findings of the present study show that the life history traits are linked to soil factors.

2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


2015 ◽  
Vol 8 (1) ◽  
pp. 57-71 ◽  
Author(s):  
John M. Wallace ◽  
Pamela L. S. Pavek ◽  
Timothy S. Prather

AbstractVentenata dubia is an exotic winter annual grass that has invaded Conservation Reserve Program (CRP) lands, improved pastures, intensively managed hay fields, and rangelands within the Intermountain Pacific Northwest (PNW). Currently, producers are attempting to develop V. dubia management strategies with little knowledge of its life history traits. We conducted several studies to characterize V. dubia life history patterns. Preliminary germination trials were completed to describe primary and secondary dormancy characteristics. Field studies were conducted to evaluate (1) seed bank persistence patterns, (2) seedling emergence patterns under V. dubia litter, and (3) seedling emergence and phenological development patterns within timothy hay, CRP, and rangeland habitats. Preliminary germination trials suggest that the after-ripening period required for loss of dormancy does not exceed 30 d and that dormancy breakdown peaks at approximately 90 d, after which germination occurs over a wide range of temperatures (9 to 29 C). A small fraction (< 1%) of the seed bank remained germinable up to 3 yr after burial at 2 cm depth in a grassland habitat. Seedling emergence and survival was significantly greater under high V. dubia litter layers (100% cover) compared with bare surface during the drier study year because of higher soil moisture levels maintained under litter. Across habitat types, mean seedling emergence (50% of total) occurred between 33 and 94 growing degree days (GDD) after soil moisture rose above the permanent wilting point in the fall. Seedling emergence periodicity varied among habitat types in relation to spring seedling emergence, ranging from 0 to 13% of total emergence per year. Phenological development differed across sites and years by up to several hundred GDDs but was closely aligned to Julian days. This collection of studies improves our understanding of V. dubia life history traits and will aid integrated weed management strategies in the Intermountain PNW.


2021 ◽  
Author(s):  
◽  
Benjamin Moginie

<p>Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males.  I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). My life history trait reconstructions suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  Identifying sources of variation in individual reproductive success is crucial to our understanding of population dynamics and evolutionary ecology. In many systems, the determinants of success are not well known. Where species have parental care, for example, determinants of success can be particularly challenging to partition between parents and offspring. Male parental care is common among fishes, where resources such as high quality territories and mates often may be limiting. In such systems, individual success of offspring may result from distinct life history pathways that are influenced by both parental effects (e.g., timing of reproduction) and by the offspring themselves (e.g., ’personalities’). These pathways, in turn, can induce phenotypic variation and affect success later in life. The drivers and consequences of variable life histories are not well understood in the context of reproductive success.  In this thesis I investigate drivers and consequences of variable life histories, for a small reef fish that exhibits male parental care (the common triplefin Forsterygion lapillum). I examined the influence of individual life history, phenotype and behaviour on (1) the performance of recently settled juveniles, and (2) the reproductive success adult males. I made field-based observations of adult males during the breeding season, measured their phenotypic traits (body size and condition) and used their otoliths to reconstruct life history characteristics (hatch dates and mean growth rates). Some males showed no evidence of territorial defence and were defined as ’floaters’; others defended territories, and a subset of these also had nests with eggs present. Adult male body size was significantly higher for males that defended breeding territories, and body condition was significantly higher for the males that had eggs (i.e., had successfully courted females). My otolith-based reconstructions of life history traits suggested two alternate pathways to ’success’ for adult males. Successful males hatched earlier and therefore had a developmental ’head start’ over less successful males (i.e., males with eggs > male territory holders without eggs > floaters). Alternatively, males can apparently achieve success by growing faster: for males born in the same month, those with eggs grew faster than those with territories and no eggs, and both groups grew faster than floaters. These results suggest that accelerated growth rate may mediate the effects of a later hatch date, and that both hatch dates and growth rates influence the success of adult males, likely through proximate effects on individual phenotypes.  I evaluated the effects of variable life history in a complimentary lab-based study. Specifically, I manipulated the developmental environments (feeding regime and temperature) for young fish and evaluated the direct effects on life history traits and phenotypes. Then, I conducted an assay to quantify the indirect effects of developmental environment, life history traits, and phenotypes on aggression and performance of young fish. These developmental environments did not have a clear, overall effect on juvenile phenotype or performance (i.e. behavioural aggression and the ability to dominate a resource). Instead, individuals (irrespective of developmental environment) that grew faster and/or longer pelagic larval durations had increased odds of dominating a limited resource. I attributed the non-significant direct effect of developmental environment to within-treatment mortality and variation among individuals in terms of their realised access to food (i.e., dominance hierarchies were apparent in rearing chambers, suggesting a non-uniform access to food). Fish that were more likely to dominate a resource were also more aggressive (i.e., more likely to engage in chasing behaviours). Fish that were larger and more aggressive established territories that were deemed to be of higher ’quality’ (inferred from percent cover of cobble resources). Overall, this study suggests a complex interplay between social systems, phenotype and life history. Developmental environments may influence phenotypes, although behavioural differences among individuals may moderate that effect, contributing to additional variation in phenotypes and life history traits which, in turn, shape the success of individuals.  Collectively, my thesis emphasises the consequences of life history variability on success at multiple life stages. These results may be relevant to other species that exhibit male parental care or undergo intense competition for space during early life stages. In addition, my results highlight interactions between life history, phenotype and behaviour that can have important implications for population dynamics and evolutionary ecology.</p>


2020 ◽  
Vol 75 ◽  
pp. e2020014-e2020014
Author(s):  
Guilherme Ramos Demetrio ◽  
Mario Eduardo Avelar Barbosa ◽  
Flávia de Freitas Coelho

2007 ◽  
Vol 70 (1) ◽  
pp. 2-11 ◽  
Author(s):  
Roland Hilgartner ◽  
Dietmar Zinner ◽  
Peter M. Kappeler

Sign in / Sign up

Export Citation Format

Share Document