scholarly journals Spatial variability of enthalpy in broiler house during the heating phase

Author(s):  
Patrícia F. P. Ferraz ◽  
Tadayuki Yanagi Junior ◽  
Gabriel A. e S. Ferraz ◽  
Leonardo Schiassi ◽  
Alessandro T. Campos

ABSTRACT The thermal environment inside a broiler house has a great influence on animal welfare and productivity during the production phase. Enthalpy is a thermodynamic property that has been proposed to evaluate the internal broiler house environment, for being an indicator of the amount of energy contained in a mixture of water vapor and dry air. Therefore, this study aimed to characterize the spatial variability of enthalpy in a broiler house during the heating phase using geostatistics. The experiment was conducted in the spring season, in a commercial broiler house with heating system consisting of two furnaces that heat the air indirectly, in the first 14 days of the birds' life. It was possible to characterize enthalpy variability using geostatistical techniques, which allowed observing the spatial dependence through kriging maps. The analyses of the maps allowed observing problems in the heating system in regions inside the broiler house, which may cause a thermal discomfort to the animals besides productive and economic losses.

2013 ◽  
Vol 33 (3) ◽  
pp. 433-444 ◽  
Author(s):  
Patrícia F. Ponciano ◽  
Tadayuki Yanagi Junior ◽  
Gabriel A. E S. Ferraz ◽  
João D. Scalon ◽  
Leonardo Schiassi

The air dry-bulb temperature (t db),as well as the black globe humidity index (BGHI), exert great influence on the development of broiler chickens during their heating phase. Therefore, the aim of this study was to analyze the structure and the magnitude of the t db and BGHI spatial variability, using geostatistics tools such as semivariogram analysis and also producing kriging maps. The experiment was conducted in the west mesoregion of the states of Minas Gerais in 2010, in a commercial broiler house with heating system consisting of two furnaces that heat the air indirectly, in the firsts 14 days of the birds' life. The data were registered at intervals of five minutes in the period from 8 a.m. to 10 a.m. The variables were evaluated by variograms fitted by residual maximum likelihood (REML) testing the Spherical and Exponential models. Kriging maps were generated based on the best model used to fit the variogram. It was possible to characterize the variability of the t db and BGHI, which allowed observing the spatial dependence by using geostatistics techniques. In addition, the use of geostatistics and distribution maps made possible to identify problems in the heating system in regions inside the broiler house that may harm the development of chicks.


Revista CERES ◽  
2018 ◽  
Vol 65 (4) ◽  
pp. 346-355 ◽  
Author(s):  
Patrícia Ferreira Ponciano Ferraz ◽  
Gabriel Araújo e Silva Ferraz ◽  
Tadayuki Yanagi Junior ◽  
Luis Fillipe Leal de Melo ◽  
Jaqueline de Oliveira Castro ◽  
...  

ABSTRACT The enthalpy is a thermodynamic property that can be used to evaluate thermal environment for chickens, considering the meteorological variables that most influence the animal’s thermal comfort, the dry-bulb temperature and the relative humidity. The aim was to analyze and compare the spatial variability of enthalpy in a broiler aviary during three periods of the day (morning, afternoon and night) for 14 living days, using geostatistical techniques. The experiment was performed in a commercial broiler aviary located in the western mesoregion of Minas Gerais, Brazil, where 28,000 male Cobb chicks were housed. The heating system consisted of an industrial indirect-fired biomass furnace. The heated air was inflated by an AC motor, 2206 W of power, 1725 RPM. Geostatistical techniques were used through semivariogram analysis and isochore maps were generated through data interpolation by kriging. The semivariogram was fitted by the restricted maximum likelihood method. The used mathematical model was the spherical one. After fitting the semivariograms, the data were interpolated by ordinary kriging. The semivariograms along with the isochore maps allowed identifying the non-uniformity of spatial distribution of the enthalpy throughout the broiler aviary for three periods during 14 days. It was observed that in the first two days of life, during the three evaluated periods the poultry kept most of the time and in most of the poultry shed under conditions of enthalpy below the recommended level in the literature. In the12th and 13th days during the three analyzed periods were the most critical because they showed values below the comfort throughout the day, over the entire broiler aviary. Possible failures in the heating system were also observed, especially at night, which can be a discomfort source for poultry and hence generate productive and economic losses.


2012 ◽  
Author(s):  
Patrícia Ferreira Ponciano ◽  
Tadayuki Yanagi Junior ◽  
Gabriel Araujo e Silva Ferraz ◽  
Gabriel Araujo e Silva Ferras ◽  
João Domingos Scalon ◽  
...  

Energy ◽  
2021 ◽  
pp. 122555
Author(s):  
Wei Liao ◽  
Yimo Luo ◽  
Jinqing Peng ◽  
Dengjia Wang ◽  
Chenzhang Yuan ◽  
...  

2018 ◽  
Vol 30 (5) ◽  
pp. 784-788 ◽  
Author(s):  
Manuela Crispo ◽  
C. Gabriel Sentíes-Cué ◽  
George L. Cooper ◽  
Grace Mountainspring ◽  
Charles Corsiglia ◽  
...  

Infectious coryza, caused by Avibacterium paragallinarum, is an acute respiratory disease of poultry that can result in substantial morbidity, mortality, and economic losses. In March 2017, the Turlock branch of the California Animal Health and Food Safety laboratory system encountered an unusual clinical and pathologic presentation of infectious coryza in 6 live, 29-d-old, commercial broiler chickens that were submitted for diagnostic investigation. Antemortem evaluation revealed severe neurologic signs, including disorientation, torticollis, and opisthotonos. Swollen head–like syndrome and sinusitis were also present. Histologically, severe sinusitis, cranial osteomyelitis, otitis media and interna, and meningoencephalitis were noted, explaining the clinical signs described. A. paragallinarum was readily isolated from the upper and lower respiratory tract, brain, and cranial bones. Infectious bronchitis virus (IBV) was also detected by PCR, and IBV was isolated in embryonated chicken eggs. Based on sequencing analysis, the IBV appeared 99% homologous to strain CA1737. A synergistic effect between A. paragallinarum and IBV, resulting in exacerbation of clinical signs and increased mortality, may have occurred in this case. A. paragallinarum should be considered among the possible causes of neurologic signs in chickens. Appropriate media should be used for bacterial isolation, and the role of additional contributing factors and/or complicating agents should be investigated in cases of infectious coryza.


2002 ◽  
Vol 8 (15) ◽  
pp. 171-174
Author(s):  
Hiroshi YOSHINO ◽  
Hiroshi SATO ◽  
Masuo HIKOSAKA ◽  
Joanghoon LEE ◽  
Teruaki MITAMURA

2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


2017 ◽  
Vol 42 (4) ◽  
pp. 70-77
Author(s):  
Teng Shao ◽  
Hong Jin ◽  
Lihua Zhao

According to the survey and measurement on rural housing in the Northeast severe cold regions of China, this paper analyzed the existing situation and problems of current rural housing in terms of integral development, functional layout, envelop structure, interior thermal environment, heating system and energy utilization etc.. Based on the climatic features of severe cold regions, as well as rural financial and technical conditions, living and production mode, residential construction characteristics and existing resource status etc., the feasible approaches of achieving building energy saving has been proposed, thus acting as a guidance for new rural housing design in severe cold regions.


Sign in / Sign up

Export Citation Format

Share Document