scholarly journals Determination of the hygroscopic equilibrium and isosteric heat of aji chili pepper

Author(s):  
Ednilton T. Andrade ◽  
Vitor G. Figueira ◽  
Luciana P. Teixeira ◽  
José H. da S. Taveira ◽  
Flávio M. Borém

ABSTRACT This study focuses on the determination of the hygroscopic equilibrium and isosteric heat of the aji chili pepper (Capsicum baccatum) under different controlled temperature and relative air humidity conditions. In addition, the objective was to adjust the model among the existing literature models that best represent the isothermal sorption behavior, as well as propose a new model to represent this phenomenon. Having obtained the mathematical models and experimental data, the best model and parameters that represent the hygroscopicity and the isosteric heat satisfactorily was determined. The temperatures used were 30, 55, and 70 °C, with water activity levels from 0.11 to 0.84. The model that best fit the data had a R2 value of 0.97. The integral isosteric heat of sorption for ‘Dedo-de-Moça’ chili pepper within a moisture content from 0.07 to 0.55 (dry basis) ranged from 3641.66 to 2614.38 kJ kg-1.

2020 ◽  
Vol 8 (3) ◽  
pp. 50
Author(s):  
Hanndson Araujo Silva ◽  
Josivanda Palmeira Gomes ◽  
Alexandre José de Melo Queiroz

The hygroscopic and thermal behavior of kernel flour from Ziziphus joazeiro fruits were investigated. Adsorption isotherms were obtained at temperatures of 293, 303 and 313 K and adjusted to GAB, Oswin and Peleg models. The best fit of the experimental data was obtained with the GAB model with R² values> 0.994 and mean percentage deviation P <10%. The isotherms obtained were sigmoidal type II. Isosteric heat and other thermodynamic properties were calculated as a function of moisture content. Adsorption isosteric heat decreased exponentially with increasing moisture content and differential entropy increased with moisture content, while differential enthalpy decreased. The theory of compensation confirmed that these properties are dependent on moisture content. The isotherms presented a spontaneous and enthalpy process.


Author(s):  
Cristian F. Costa ◽  
Paulo C. Corrêa ◽  
Jaime D. B. Vanegas ◽  
Fernanda M. Baptestini ◽  
Renata C. Campos ◽  
...  

ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.


2007 ◽  
Vol 13 (3) ◽  
pp. 231-238 ◽  
Author(s):  
P.C. Corrêa ◽  
A.L.D. Goneli ◽  
C. Jaren ◽  
D.M. Ribeiro ◽  
O. Resende

This study was carried out to evaluate the sorption isotherms of peanut pods, kernels and hulls for several temperature and humidity conditions and to fit different mathematical models to the experimental data, selecting the one best fitting the phenomenon. The dynamic method was applied to obtain the hygroscopic equilibrium moisture content. The environmental conditions were provided by means of an atmospheric conditioning unit, in which removable perforated trays were placed to allow air to pass through peanut mass, each one containing 50 g of the product. The mathematical models frequently used for the representation of hygroscopicity of agricultural products were fit to the experimental data. Based on those results, it was concluded that peanut pods, kernels and hulls presented differentiated hygroscopicity. The equilibrium moisture content for peanut pods, kernels and hulls increased with an increase in the relative humidity at any particular temperature and decreased with increase in temperature at constant relative humidity. At a constant water activity, peanut hulls samples had higher equilibrium moisture content than the pods and kernels samples. Based on statistical parameters, the modified Henderson and Chung-Pfost models were found to adequately describe the sorption characteristics of peanut pods, kernels and hulls. Isosteric heat of desorption were evaluated by applying the Clausius—Clapeyron equation to experimental isotherms and decreased with increasing moisture content. The peanut hulls had higher isosteric heat of sorption than that peanut pods and kernels.


2020 ◽  
pp. 40-55
Author(s):  
Carola Andrea Sosa ◽  
Liliana Edith Vergara ◽  
María Victoria Traffano-Schiffo ◽  
Sonia Cecilia Sgroppo

The present study is about the development of a techno-functional confectionery (soft candy), based on native raw materials from the Chaqueña region. In order to analyze it shelf life, the sorption isotherms were determined at 4, 20 and 30 ° C. Several mathematical models were applied to adjust the sorption behavior, with Peleg's model being the one that best fit the experimental data. The results obtained in this study, open an opportunity for future work in which the food developed can be used as a carrier of functional compounds such as fibers, proteins, bioactive compounds and natural dyes, among others.


2014 ◽  
Vol 541-542 ◽  
pp. 374-379 ◽  
Author(s):  
Kiattisak Suntaro ◽  
Supawan Tirawanichakul ◽  
Yutthana Tirawanichakul

Equilibrium moisture contents (EMC) of air dried sheet (ADS) rubber were determined by commonly gravimetric-static method with saturated salt solution among surrounding temperatures of 40-70°C correlated to water activity (aw) ranges between 0.10 and 0.9. The experimental results was analyzed by 5 commonly EMC model. The results showed that equilibrium moisture content of ADS rubber decreased with increase of surrounding temperature at constant water activity and the simulated data using Chung-Pfost model has a good relation to experimental data with R2, RMSE and χ2 equal 0.9565, 0.0235 and 0.0006, respectively. However some physical property of ADS rubber sample affects to evaluate EMC modeling. Due to avoid this effect, thus the aim of this research work was to determine EMC value by using Artificial neural network (ANN) method and also evaluate the isosteric heat of sorption by following the Clausius-Clapeyron equation. The results showed that simulated results using ANN approach has relatively high accuracy compared to common EMC model. Finally determination of isosteric heat of sorption and entropy of sorption of ADS rubber were carried on. The results stated that the enthalpy and entropy of heat sorption was power function and polynomial function of moisture content respectively. These two parameters of ADS rubber can be used for prediction suitable storage condition and drying condition for ADS rubber drying in the near future work.


2014 ◽  
Vol 28 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Kamran Maleki Majd ◽  
Seyed H. Karparvarfard ◽  
Asgar Farahnaky ◽  
Sara Ansari

Abstract In this study the moisture sorption isotherm of grape seed was determined by using a static gravimetric method at 35-65°C and 0.108-0.821 water activity range. The sorption isotherms were found to be typical sigmoid shape of most food materials. Five models including the Brunauer-Emmett-Teller (2-parameter), Guggenheim, Anderson and De Boer (3-parameter), Oswin (2-parameter), Ferro-Fontan (3-parameter) and Peleg (4-parameter) models were considered to fit the experimental data. The Ferro- Fontan and Peleg equations (at three temperatures 35, 45, 65°C) having R2 greater than 0.97 and lower values of standard error of estimate and deviation modulus gave the best fit of the experimental data throughout the entire range of water activity. The net isosteric heat of sorption, calculated by Calusius-Clapeyron equation on experimental data, was found to be a polynomial and exponential function of equilibrium moisture content within the temperature range investigated.


2014 ◽  
Vol 10 (4) ◽  
pp. 583-594 ◽  
Author(s):  
Kong S. Ah-Hen ◽  
Roberto Lemus-Mondaca ◽  
Karen A. Mathias-Rettig ◽  
Antonio Vega-Gálvez ◽  
Jessica López

Abstract Adsorption and desorption isotherms of fresh and dried murtilla (Ugni molinae Turcz) berries were determined at 20, 40 and 60°C using a gravimetric technique. The experimental data obtained were fitted to eight models, namely GAB, BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias–Chirife. A non-linear least square regression analysis was used to evaluate the models. The GAB model best fitted the experimental data. Isosteric heat of sorption was determined from the equilibrium sorption data using the Clausius–Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy–entropy compensation theory applied to the sorption isotherms indicated an enthalpy controlled sorption process. Glass transition temperature of murtilla was determined by differential scanning calorimetry and modelled as a function of moisture content by the Gordon–Taylor equation and as function of water activity by Roos and Khalloufi models, which proved to be excellent tools for predicting glass transition of murtilla.


2021 ◽  
Author(s):  
Catherine A. Kelly ◽  
Mike J. Jenkins

AbstractThe isothermal crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was evaluated using a range of models, namely, Avrami, simplified Hillier, Tobin, Malkin, Urbanovici–Segal, Velisaris–Seferis, and Hay. Two methods of model evaluation were used: determination of the parameters through traditional double log plots and curve fitting via nonlinear, multivariable regression. Visual inspection of the cumulative crystallization curves, calculation of the R2 value and standard error of the regression, and evaluation of the returned parameters were used to assess which model best describes the experimental data. The Hay model was found to generate the best fit, closely followed by the Velisaris–Seferis parallel model, suggesting that primary and secondary crystallization occur concurrently. The Avrami, Malkin, and Tobin models were found to perform well when the data is restricted to the region where primary crystallization dominates; however, they could not be used to successfully model the entire crystallization process. This work highlights the importance of selecting the most appropriate model for analyzing kinetics, especially when high levels of lamellar thickening and infilling occur during crystallization.


Author(s):  
Weder N. Ferreira Junior ◽  
Osvaldo Resende ◽  
Kelly A. de Sousa ◽  
Melícia I. A. Gavazza ◽  
Juliana de F. Sales ◽  
...  

ABSTRACT The objective of this study was to determine the desorption isotherms and isosteric heat of Annona crassiflora Mart. seeds, using Akaike information criterion (AIC) and Schwarz’s Bayesian information criterion (BIC) to assist in the choice of the nonlinear regression model. The desorption isotherms were determined by indirect static method and water activity was obtained using the instrument HygroPalm; the product was put in the device in B.O.D. chamber set at 10, 20, 30 and 40 °C. Several nonlinear regression models were fitted to the experimental data by the Gauss-Newton method. The desorption isotherms of Annona crassiflora Mart. seeds can be represented by the models of Chung-Pfost, Copace, Modified GAB, Modified Henderson, Modified Oswin, Sabbah and Sigma Copace. However, the Sigma Copace model showed better fit to the experimental data, with lower AIC and BIC values, being chosen to represent the desorption isotherms of Annona crassiflora Mart seeds. Isosteric heat increased with decreasing moisture content, requiring a greater amount of energy to remove water from seeds, with values ranging from 2541.64 to 2481.56 kJ kg-1, for the moisture content range from 5.69 to 14.93% on a dry basis.


Author(s):  
Kelly A. de Sousa ◽  
Osvaldo Resende ◽  
Bruno de S. Carvalho

ABSTRACT The objective was to determine water sorption isotherms of diaspores of pequi fruits in order to obtain information on the amount of water that this product desorbs at the temperatures of 10, 20, 30 and 40 °C and water activities from 0.20 to 0.89, adjusting different mathematical models to experimental data, and to determine its latent heat and isosteric heat. The equilibrium moisture content was obtained through the indirect static method, using the device Hygropalm Model Aw 1. The Modified Henderson model was the one that best fitted the data and was selected to predict the equilibrium moisture content of pequi diaspore. It was observed that the higher the temperature for the same equilibrium moisture content (% d.b.), the higher the water activity values. As temperature values increased, there was a reduction in the vaporization latent heat of the product. Isosteric heat values of diaspores of pequi fruits in the moisture content range of 4.02 to 16.63 (% d.b.) varied from 2,776.49 to 2,558.39 kJ kg-1.


Sign in / Sign up

Export Citation Format

Share Document