scholarly journals Gas exchanges and growth of cotton cultivars under water salinity

Author(s):  
André A. R. da Silva ◽  
Luana L. de S. A. Veloso ◽  
Ronaldo do Nascimento ◽  
Elka C. S. Nascimento ◽  
Carlos V. de C. Bezerra ◽  
...  

ABSTRACT Indication of salt-tolerant cotton cultivars can make the agricultural exploitation with saline water irrigation feasible in the Brazilian semi-arid region. Thus, this study aimed to evaluate the gas exchanges and growth of cotton cultivars irrigated with saline water. The study was conducted in pots adapted as drainage lysimeters under greenhouse conditions, using a sandy loam Entisols as substrate. Treatments were distributed in completely randomized design, in 5 x 2 factorial arrangement, relative to five levels of irrigation water electrical conductivity - ECw (1.5, 3.0, 4.5, 6.0 and 7.5 dS m-1) and two cotton cultivars (BRS 368 RF and BRS Safira). Increase in irrigation water salinity inhibits the vegetative growth and gas exchanges of the cotton cultivars BRS Safira and BRS 368 RF. Leaf area and instantaneous carboxylation efficiency are the most affected variables. Physiological and growth performance of the cultivar BRS Safira in response to water salinity was higher than that of BRS 368 RF.

Author(s):  
Raquele M. de Lira ◽  
Ênio F. de F. e Silva ◽  
Marcone da S. Barros ◽  
Leandro C. Gordin ◽  
Lilia G. Willadino ◽  
...  

ABSTRACT In Pernambuco, state in the northeastern region of Brazil, in the coastal areas, due to the intrusion of seawater, the waters used for sugarcane irrigation can have high salt contents and cause serious problems to soil and plant. The present study aimed to evaluate the effects of irrigation with saline water on the physiology of sugarcane, variety RB867515, irrigated under five salinity levels of 0.5; 2.0; 3.5; 5.0 and 6.5 dS m-1 in a completely randomized design, with four replicates in drainage lysimeters. The study was conducted in the period from December 2014 to June 2015, at the Federal Rural University of Pernambuco (UFRPE). Salinity levels were obtained by dissolving NaCl and CaCl2 in water from the local supply system (ECw = 0.5 dS m-1). Leaves were analyzed for stomatal conductance, transpiration and photosynthesis at 140, 229 and 320 days after planting (DAP) and for water potential at 137, 243 and 318 DAP. Increase in irrigation water salinity inhibited all variables at the respective plant ages and with greater intensity in the first evaluations (140 and 229 DAP) for stomatal conductance and transpiration. Photosynthesis and water potential showed the greatest linear reductions at the last data collection (320 and 318 DAP), respectively. Increase in salinity of irrigation water hampered water potential and gas exchange in the leaves of RB867515 sugarcane.


2017 ◽  
Vol 30 (4) ◽  
pp. 1001-1008
Author(s):  
JOÃO PEDRO ALVES DE AQUINO ◽  
ANTÔNIO AÉCIO DE CARVALHO BEZERRA ◽  
FRANCISCO DE ALCÂNTARA NETO ◽  
CARLOS JOSÉ GONCALVES DE SOUZA LIMA ◽  
RAYLSON RODRIGUES DE SOUSA

ABSTRACT Cowpea is broadly cultivated worldwide, especially in semi-arid or arid regions where soil or irrigation water salt contents can negatively influence the species’ productive capacity. The objective of this study was to evaluate the morphophysiological responses of cowpea genotypes to irrigation water salinity. The experiment was conducted in a greenhouse, under a completely randomized design with nine replications and in a 5x3 factorial scheme. Treatments consisted of five levels of irrigation water electrical conductivity - EC (EC0: 0.55; EC1: 1.60; EC2: 3.20; EC3: 4.80 and EC4: 6.40 dS m-1), applied from the 15th day after sowing (DAS), and three cowpea genotypes (G1: BRS Imponente; G2: MNC04-795F-168 and G3: MNC04-795F-159). EC increases at 35 DAS promoted stem diameter reductions of 8.0% (G1), 11.4% (G2), and 7.7% (G3), indicating different resistance to salinity by each genotype. Leaf area reductions at 25 and 38 DAS were 30.9% and 38.8% for EC0 and EC4, respectively. The BRS Imponente cultivar presented a performance superior to those of G2 and G3 in relation to stem diameter and stem dry matter at 25 DAS, and root-shoot and root-leaf ratios at 38 DAS.


Author(s):  
Elysson M. G. Andrade ◽  
Geovani S. de Lima ◽  
Vera L. A. de Lima ◽  
Saulo S. da Silva ◽  
Hans R. Gheyi ◽  
...  

ABSTRACT The study was carried out to evaluate the photosynthetic efficiency and growth of yellow passion fruit, cultivated under different levels of irrigation water salinity and exogenous application of hydrogen peroxide. The experiment was carried out in greenhouse of the Universidade Federal de Campina Grande, PB, Brazil, using drainage lysimeters with capacity for 100 dm3, filled with Entisol of sandy texture. The experimental design was randomized blocks using a 4 x 4 factorial scheme, with three repetitions, corresponding to four water salinity (0.7; 1.4; 2.1 and 2.8 dS m-1) and four concentrations of hydrogen peroxide (0, 20, 40 and 60 µM). The different concentrations of hydrogen peroxide were applied by soaking the seed for a period of 24 h and spraying the leaves on the adaxial and abaxial sides. At 35 days after transplanting, the interaction between water salinity and hydrogen peroxide concentrations did not significantly interfere with plant physiology and growth, except for the number of leaves. The hydrogen peroxide did not cause significant effects on any of the evaluated plant variables. Increasing salinity of irrigation water led to reduction in gas exchanges at 61 and 96 days after transplanting. Water salinity inhibited the CO2 assimilation, transpiration, stomatal conductance, instantaneous carboxylation efficiency and stem diameter of passion fruit plants.


Author(s):  
Geocleber G. de Sousa ◽  
Valdécio dos S. Rodrigues ◽  
Stallone da C. Soares ◽  
Ítalo N. Damasceno ◽  
Jamili N. Fiusa ◽  
...  

ABSTRACT Salinity is a complex phenomenon that affects the metabolic processes of the plant, changing the physiological and biochemical parameters. In this context, the objective of this study was to evaluate the effect of irrigation water salinity on growth, biomass and gas exchanges in soybean crop in soil with and without biofertilizer. The experiment was carried out in a greenhouse at the experimental area of the Agrometeorological Station of the UFC, Fortaleza, CE, Brazil, from May to June 2016. The treatments were distributed in randomized blocks in a 5 × 2 factorial scheme, corresponding to the levels of irrigation water salinity: 0.8; 1.6; 2.4; 3.2 and 4.0 dS m-1, in soil without and with bovine biofertilizer, in five replicates. The following variables were evaluated: growth (plant height, number of leaves, stem diameter, and leaf area), biomass (leaf, root and total dry matter) and gas exchanges (photosynthesis, stomatal conductance and transpiration). Irrigation water salinity reduced photosynthesis, stomatal conductance and transpiration, but with less intensity in the plants that received bovine biofertilizer. The aerobically fermented bovine biofertilizer attenuates saline stress on the initial growth and biomass of soybean plants.


Author(s):  
Francisco De Oliveira Mesquita ◽  
Patricya Lorenna De Brito Rodrigues ◽  
Ana Célia Maia Meireles ◽  
José Leonardo Noronha Cardoso ◽  
Thiago De Souza Ribeiro ◽  
...  

The yellow passion fruit is a plant climbing botanically that has a good geographical distribution in Brazil, with more than 150 species in the country. The presence of salts in soil and irrigation water is one of the main obstacles in agriculture in the world, caused by low rainfall and high evapotranspirative rates causing the salts to accumulate in the soil. However, alternatives have been sought to try to mitigate such limitations of seedling production, such as the use of biofertilizers in the soil. In this way, the objective was to evaluate the growth and development of yellow passion fruit seedlings under the effects of irrigation water salinity and the use of bovine biofertilizer on the substrate. An experiment was carried out in a greenhouse in the Center for Agrarian Sciences and Biodiversity, from october/2017 tomarch/2018, in county of Crato-Ceara, Brazil. The substrate used was the first 20 cm material of a yellow Red Argisol. The experimental design was completely randomized design (C.R.D) in a factorial scheme 5x2, referring to the electrical conductivity values ​​of the irrigation water: 0.5; 1.0; 2.0; 3.0 and 4.0 dS m-1, in the soil without and with common biofertilizer, with three replicates. The biofertilizer, after being diluted in non-saline water (0.5 dS m-1) in the ratio of 1:3, was applied only once to 10% of the substrate volume two days before sowing. The increase in the salinity of irrigation water negatively affected the initial behavior of the passion fruit seedlings in terms of growth and development, especially in the treatments that did not receive the organic feed.


2018 ◽  
Vol 10 (9) ◽  
pp. 402 ◽  
Author(s):  
Leandro de P. Souza ◽  
Reginaldo G. Nobre ◽  
Hans R. Gheyi ◽  
Benedito F. Bonifácio ◽  
Geovani S. de Lima ◽  
...  

Due to the reduced availability of good-quality water in the semi-arid region of Northeast Brazil, the utilization of saline waters in irrigation became an alternative for the expansion of agriculture in this region. Thus, it is necessary to develop techniques which can make viable the use of these waters in agriculture. Given the above, this study aimed to evaluate the morphophysiology of ‘FAGA 11’ cashew rootstock subjected to different levels of irrigation water salinity and exogenous proline application through the leaves. The experiment was carried out in a greenhouse of the Federal University of Campina Grande, at the Center of Sciences and Agri-Food Technology, Campus of Pombal, PB, Brazil, in a randomized block design, in 5 × 4 factorial scheme, with three replicates and two plants per plot. Treatments consisted of different levels of irrigation water electrical conductivity—ECw (0.3; 1.0; 1.7; 2.4 and 3.1 dS m-1) combined with proline concentrations applied through the leaves—PC (0; 4; 8 and 12 mM). Irrigations with water up to ECw of 1.37 dS m-1 may be used as it causes an acceptable 10% reduction in the variables of morphology of cashew FAGA 11 seedlings. The proline concentrations tested, with the exception of the Dickson’s quality index of seedlings, did not attenuate the deleterious effects of irrigation water salinity on the cashew FAGA 11 rootstock seedlings.


Author(s):  
K. Q. D. Brito ◽  
R. Nascimento ◽  
J. E. A. dos Santos ◽  
F. G. de Souza ◽  
I. A. C. Silva

<p>O feijão-caupi tem grande importância socioeconômica, pois é um componente da dieta alimentar, especialmente pelo seu valor nutritivo e fonte de renda para agricultura familiar. Entretanto é uma cultura sensível a salinidade da água de irrigação e solo, o que impossibilita o cultivo em áreas afetadas por sais. Neste sentido, objetivou-se com o trabalho avaliar o crescimento de genótipos de feijão-caupi irrigados com água salina, a fim de fornecer subsídios ao cultivo em regiões afetadas por sais. A pesquisa foi desenvolvida em casa de vegetação da Universidade Federal de Campina Grande. Utilizou-se o delineamento experimental inteiramente casualizado, em esquema fatorial 2 x 5, sendo os tratamentos compostos de dois níveis de condutividade elétrica da água (A1 - água de abastecimento com 0,8dSm-1 e A2 - solução salina 4,8 dSm-1) e cinco genótipos de feijão-caupi (G1 - MNC04-762F-9, G2 - MNC04-762F-3, G3 - MNC04-762F-21, G4 - MNC04-769F-62 e G5 - MNC04-765F-153) com 4 repetições, resultante em 10 tratamentos. Aplicação dos tratamentos com água salina teve inicio aos 12 dias após o semeio (DAS). As variáveis analisadas foram, altura de plantas (ALT), número de folhas (NF), e diâmetro do caule (DC), nas épocas de avaliação correspondente aos 27, 42, 57 e 72 dias após a semeadura (DAS) e massa seca das folhas (MSF), massa seca do caule (MSC), massa seca da raiz (MSR) e massa seca da parte aérea (MSPA). A salinidade da água de irrigação reduziu todas as variáveis de crescimento e fitomassa avaliadas.</p><p> <em><strong>Growth bean-cowpea genotypes irrigated with saline water</strong></em></p><p>Abstract: The cowpea has great socio-economic importance, as it is a component of food people diet, especially in developing countries. Sensitive to salinity, which makes difficult to cultivate in areas affected by salt. The objective of the study was to evaluate the growth of cowpea genotypes irrigated with saline water in order to provide subsidies to farming in areas affected by salt. The treatments consisted of the combination of two factors: Irrigation Water Salinity (A1 - water supply with 0,8dSm-1 and A2 – saline solution 4.8 dSm-1) and cowpea genotypes (G1 - MNC04-762F -9, G2 - MNC04-762F-3 G3 - MNC04-762F-21 G4 - G5 and MNC04-769F-62 - MNC04-765F-153). Combined factors, a completely randomized design, resulted in 10 treatments, with four repetitions. The irrigation with saline water given to the 12 DAS. The variables analyzed were plant height (PH), leaves number (LN), and stem diameter (SD), the evaluation of times corresponding to 27, 42, 57 and 72 days after sowing (DAS) and dry matter leaves (DML), dry mass of the stem (DMS) and root dry mass (RDM). They salinity of irrigation water reduced all growth variables and evaluated biomass.</p>


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 79-86
Author(s):  
José Leôncio de Almeida Silva ◽  
José Francismar de Medeiros ◽  
Iarajane Bezerra do Nascimento ◽  
Jeferson Vieira José ◽  
Neyton de Oliveira Miranda ◽  
...  

The experiment was conducted in 2014, in a completely randomized factorial design (5x6), with three replications. The factors were soil classes (Typic Ustipsamments, Typic Haplustults, Typic Haplustepts, Typic Ustifluvents, and Typic Haplusterts) and levels of irrigation water salinity (0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 dS m-1). Increasing salinity of irrigation water caused increase in leaf contents of macronutrients in all soils. Adequate leaf contents of N, K, and Mg were observed in plants grown in all soils except K in Typic Haplusterts and Mg in Typic Ustipsamments. Appropriate P levels were observed only in Typic Haplustepts, and Ca only in Typic Haplustults and Typic Ustifluvents. Increased salinity of irrigation water caused increased leaf contents of micronutrients in all soils except copper in Typic Ustifluvents, iron in Typic Haplusterts and Typic Haplustults, and manganese in Typic Ustipsamments and Typic Haplustults.


Irriga ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 504-517 ◽  
Author(s):  
Lourival Ferreira Cavalcante ◽  
Geocleber Gomes de Sousa ◽  
Saulo Cabral Gondim ◽  
Fernando Luiz Figueiredo ◽  
Ícaro Herbert Lucena Cavalcante ◽  
...  

CRESCIMENTO INICIAL DO MARACUJAZEIRO AMARELO MANEJADO EM DOIS SUBSTRASTOS IRRIGADOS COM ÁGUA SALINA   Lourival Ferreira Cavalcante1; Geocleber Gomes de Sousa2; Saulo Cabral Gondim3; Fernando Luiz Figueiredo1; Ítalo Herbert Lucena Cavalcante4; Adriana Araujo Diniz51Departamento de Solos e Engenharia Rural, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB,  [email protected] 2Solos e Nutrição de Plantas, Centro de Ciências Agrárias, Universidade Federal Ceará, Fortaleza, CE3Recursos Naturais, Universidade Federal de Campina Grande, Campina Grande, PBUniversidade Federal do Piauí, Bom Jesus, PI5Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB  1 RESUMO             O trabalho foi realizado, no período de outubro a dezembro de 2006, em ambiente protegido do CCA/UFPB – Campus II, Areia, PB, com o objetivo de avaliar os efeitos da salinidade da água de irrigação sobre o crescimento inicial do maracujazeiro amarelo (Passiflora edulis f. flavicarpa Deg) cultivado em diferentes substratos. Os tratamentos foram distribuídos em blocos casualizados com três repetições e 12 unidades experimentais por parcela, arranjados num fatorial 5 x 2, referentes aos valores de condutividade elétrica da água de irrigação ( 0,4; 1,0; 2,0; 3,0 e 4,0 dS m-1 ) e dois substratos, sendo um mais arenoso (Solo Neossolo Regolítico) e o outro mais argiloso, constituído por uma mistura do Neossolo Regolítico (50% ) mais Nitossolo Vermelho eutrófico (50%). O aumento da salinidade da água de irrigação elevou expressivamente o caráter salino dos substratos, refletindo-se na redução do crescimento pelo diâmetro caulinar, área foliar, produção de biomassa das raízes e parte aérea das plantas em ambos os casos, porém com maior intensidade no substrato constituído pela mistura de parte iguais dos solos Neossolo Regolítco e Nitossolo Vermelho. UNITERMOS: Salinidade, irrigação, Passiflora edulis, condutividade elétrica  CAVALCANTE, L. F.; SOUSA, G. G. de; GONDIM, S. C.; FIGUEIREDO, F. L.; CAVALCANTE, Í. H. L.; DINIZ, A. A. INITIAL GROWTH OF YELLOW PASSION FRUIT CROPED IN TWO SUBSTRATS MANAGED WITH SALINE WATER IN TWO SUBSTRATES  2 ABSTRACT                                    This study was carried out, during  the period of October /2006 to December /2006, in green house conditions from Agrarian Sciences Center , Federal University of Paraíba, Paraíba State, Brazil, in order to evaluate the effects of water salinity on initial growth of yellow passion plants (Passiflora edulis f. flavicarpa Deg) cultivated in different substrates. Treatments were distributed in a randomized blocks experimental design with three repetitions and 12 experimental units per parcel, in a factorial arrangement 5 x 2, referring to electrical conductivity of irrigation water levels (0.4; 1.0; 2.0; 3.0 e 4.0 dS m-1) and two substrates, being a sandy (Entisol) and a clay, composed by a mixture of Entisol (50%) and Eutrophic Red Nitosol (50%). The increasing of irrigation water salinity expressively enhanced the saline index of the substrate, reflecting in a plant growth reduction related to stem diameter, leaf area, root mass production and shoot mass production of both substrates, but more expressive for the one with equal parts of Entisol and Red Nitosol. KEYWORDS: Salinity, irrigation, Passiflora edulis, electric conductivity


Author(s):  
Mônica S. da S. Sousa ◽  
Vera L. A. de Lima ◽  
Marcos E. B. Brito ◽  
Luderlândio de A. Silva ◽  
Rômulo C. L. Moreira ◽  
...  

ABSTRACT The salinity of water and soil reduces the growth and production of crops, especially the fruit trees, such as papaya. Thus, it is necessary to obtain management alternatives for cultivation under these conditions. Therefore, the objective of this study was to evaluate the growth and phytomass of papaya cultivated under irrigation with saline water and organic fertilization. An experiment was set up using a randomized block design, with the treatments distributed in a 5 x 2 factorial scheme, consisting of five levels of salinity of irrigation water (0.6, 1.2, 1.8, 2.4 and 3.0 dS m-1) and two levels of organic fertilization (10 and 20 L of bovine manure per plant), with three replications, totaling thirty experimental plots. Growth variables of papaya were evaluated. Papaya plants were negatively affected by irrigation water salinity, with a greater effect on the number of leaves and on dry phytomass of leaves, with no effect of bovine manure levels.


Sign in / Sign up

Export Citation Format

Share Document