scholarly journals Endodontic sealers and post-endodontic waiting time affect the bond strength of the fiber posts

2020 ◽  
Vol 49 ◽  
Author(s):  
Thais Camponogara BOHRER ◽  
Patricia Eliana FONTANA ◽  
Vinícius Felipe WANDSCHER ◽  
Victor Hugo Carvalho MORARI ◽  
Rafael PILLAR ◽  
...  

Abstract Introduction The resistance adhesive of a fiber post can be affected by several factors, such as the endodontic sealer and post-endodontic waiting time. Objective The aim of this study was to evaluate the effect of different endodontic sealers and two different post-endodontic waiting times on the bond strength of fiber posts. Material and method Seventy-two bovine teeth were endodontically treated and filled using three endodontic sealers: eugenol-based, epoxy resin-based, or mineral trioxide aggregate-based. The specimens were stored at 37°C for 24 hours or for 30 months. After the respective storage times, the root canals were prepared for luting fiber posts using RelyX U200. Push-out tests and analysis of failures were performed. The push-out data were analyzed by two-way analysis of variance to compare the effects of the endodontic sealer and with the t-test to compare the effects of post-endodontic waiting time. Result The AH Plus sealer yielded the highest bond strength values at 30 months post-endodontics (11.26 Mpa) (p < 0.05), however no had difference with Endofill sealer at the same time. Endofill and MTA Fillapex sealers did not differ significantly in their effects, irrespective of the post-endodontic waiting time. Conclusion In conclusion, the endodontic sealer used and post-endodontic waiting time affect the adhesive resistance of fiber posts. The adhesion increases significantly when the fiber post is cemented 30 months after the root canal filling, while the adhesion is reduced when cementing immediately after root canal treatment, in particular for eugenol-based endodontic sealers.

2017 ◽  
Vol 42 (6) ◽  
pp. E167-E176 ◽  
Author(s):  
K Bitter ◽  
A Maletic ◽  
K Neumann ◽  
L Breschi ◽  
G Sterzenbach ◽  
...  

SUMMARY Objectives: The aim of the study was to investigate the effects of various self-adhesive resin cements on the push-out bond strengths and nanoleakage expression at the luting interfaces of fiber posts immediately and after one year of aging. Methods and Materials: One hundred forty-four extracted human anterior teeth were endodontically treated. After post space preparation, fiber posts were luted using five commercially available self-adhesive resin (SAR) cements and a core build-up material applied with a self-etch adhesive (BF: Bifix SE/Rebilda Post, VOCO; CSA: Clearfil SA Cement/Rely X Fiber Post, 3M ESPE; RX: RelyX Unicem 2/Rely X Fiber Post, 3M ESPE; SPC: Speed Cem/FRC Postec, Ivoclar Vivadent; SMC: Smart Cem/X Post, Dentsply; RB: Rebilda DC-Futurabond/Rebilda Post; n=22). For each group, half of the specimens were subjected to thermocycling (TC) (5°C-55°C, 10,000 cycles) and stored humid for one year at 37°C. Push-out bond strength data of six slices (thickness 1 mm) per root and nanoleakage expression of representative specimens were evaluated after 24 hours (baseline) and after TC and storage for one year (aging), respectively. Results: Bond strength differed significantly among resin cements (p&lt;0.0005) and the location inside the root canal (p&lt;0.0005), but not by aging (p=0.390; repeated-measures analysis of variance). SMC (14.6±5.8 MPa) and RX (14.1±6.8 MPa) revealed significantly higher bond strength compared to BF (10.6±5.4 MPa) and RB (10.0±4.6 MPa) but differed not significantly from SPC (12.8±4.8) MPa; CSA (6.1±4.6 MPa) revealed significantly lower bond strength compared to all other investigated materials (p&lt;0.05; Tukey Honestly Significantly Different). Qualitative nanoleakage analysis revealed more silver deposits at the interface in all groups after aging. For CSA, a large amount of silver deposits inside the cement was also observed at baseline and after aging. Conclusions: Fiber post luting using SAR cements demonstrated reliable bond strengths. Product-specific differences and initial degradation effects could be demonstrated.


2013 ◽  
Vol 24 (3) ◽  
pp. 241-246 ◽  
Author(s):  
Ricardo Abreu da Rosa ◽  
Mirela Sangoi Barreto ◽  
Rafael do Amaral Moraes ◽  
Juliana Broch ◽  
Carlos Alexandre Souza Bier ◽  
...  

This study aimed to assess the influence of the type of endodontic sealer (salicylate resin-based sealer vs. two endodontic sealers) and the time of fiber post cementation after root filling on the post adhesion to bovine root dentin. Sixty bovine roots were assigned to six groups (n=10), considering an experimental design with two factors (factorial 3x2): endodontic sealer factor in three levels [epoxy resin-based sealer (AH Plus), eugenol-based sealer (Endofill), and salicylate resin-based sealer plus mineral trioxide aggregate - MTA (MTA Fillapex)] and time for post cementation factor in two levels (immediate post cementation or 15 days after root canal filling). After post cementation, 2-mm-thick slices were produced and submitted to push-out test. The failure modes were analyzed under a 40× stereomicroscope and scored as: adhesive at cement/dentin interface; adhesive at cement/post interface; cement cohesive; post cohesive; dentin cohesive; or mixed. Data were analyzed using two-way ANOVA and Tukey's post-hoc tests (α=0.05). When the fiber posts were cemented immediately after the root canal filling, the bond strengths were similar, independent of the endodontic sealer type. However, after 15 days, the epoxy resin-based sealer presented higher bond strength than the other sealers (p<0.05). Comparison between each sealer in different experimental times did not reveal any differences. The main failure type was adhesive at dentin/cement interface (89.4%). The time elapsed between the root canal filling and post cementation has no influence on post/root dentin adhesion. On the contrary, the type of endodontic sealer can influence the adhesion between fiber posts and root dentin.


Author(s):  
Lara Dotto ◽  
Gabriel Kalil Rocha Pereira ◽  
Alvin Tomm ◽  
Ataís Bacchi ◽  
Rafael Sarkis-Onofre

2021 ◽  
Author(s):  
MER Gama ◽  
GS Balbinot ◽  
GC Ferreira ◽  
EG Mota ◽  
VCB Leitune ◽  
...  

SUMMARY This study aimed to evaluate the cementation and mechanical behavior of flared root canals restored with CAD/CAM milled glass fiber post-and-core systems. Sixty-six endodontically treated human canines with a flared root canal were divided into three different groups according to the type of post: GPF received prefabricated posts; GREL received relined glass fiber posts, and GMILLED received CAD/CAM milled glass fiber posts. Cementation was performed with self-adhesive resin cement. The samples were submitted to x-ray microcomputed tomography analysis for the analysis of voids and gaps. The roots were sectioned and submitted to the push-out bond strength test. The load-to-fracture was evaluated in post-and-core systems. GMILLED presented lower void and lower gap volumes when compared to GPF and GREL. On the load-to-fracture test, GREL presented statistically significant higher values than GMILLED. GPF values had no statistically significant difference from the two other groups. On the push-out bond strength test, GPF presented statistically significant lower values when compared to GREL and GMILLED. The most common failure pattern was between dentin and cement in all groups. CAD/CAM milled glass fiber post-and-core systems presented an enhanced adaptation of glass fiber posts to flared root canal systems. Their results were comparable to relined posts in bond strength, while load-to-fracture-results for GMILLED were lower than those for GPF.


2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Esma Saricam ◽  
◽  
Neslihan Bulak ◽  
Esra Özyurt ◽  
Suat Özcan ◽  
...  

Eliminating microorganisms in the root canal system is important for the success of regenerative endodontics. Objective: This study evaluated the effects of different antibiotic pastes used for regenerative endodontic procedures on dentin microhardness and the push-out bond strength of mineral trioxide aggregate (MTA) to root canal dentin. Methods: Sixty-four maxillary central incisors were instrumented and randomly divided into the following four groups (n = 16) for medicament treatment: triple antibiotic paste, amoxicillin+clavulanic acid, cefaclor, and control (no dressing). After 21 days, two root segments were obtained by sectioning the roots horizontally for push-out and microhardness evaluations. MTA was placed into the root canal of the sectioned segment for the push-out test. In the microhardness evaluation, three indentations were made at 500 and 1,000 μm from the canal lumen. The arithmetic mean was then calculated for each distance. ANOVA with post hoc Scheffe test and t test were used for the statistical analyses. The significance level was set at p < 0.05. Results: No significant difference was found between the groups in terms of push-out bond strength (p > 0.05). Cefaclor and amoxicillin+clavulanic acid reduced the microhardness values of the dentin at 500 μm (p < 0.05) while cefaclor had the lowest value at 1,000 μm (p < 0.05). Conclusion: Cefaclor reduced the microhardness value more than the other medicaments did at a depth of 1,000 μm. The pastes provided similar adhesion of MTA.


2019 ◽  
Vol 30 (4) ◽  
pp. 350-355 ◽  
Author(s):  
Thiago Lopes de Freitas ◽  
Rafael Pino Vitti ◽  
Milton Edson Miranda ◽  
William Cunha Brandt

Abstract The aim of this study was to evaluate the effect of different glass fiber posts (GFPs) diameters on the push-out bond strength to dentin. Forty unirradicular human teeth were endodontically treated and used for cementation of GFPs (White Post DC, FGM) with different diameters (n=10): P1 - ø 1.6 mm coronal x 0.85 mm apical; P2 - ø 1.8 mm coronal x 1.05 mm apical; P5 - ø 1.4 mm coronal x 0.65 mm apical; and PC - customized post number 0.5 with composite resin (Tetric Ceram A2, Ivoclair Vivadent). All GFPs were cemented into the root canal using a dual-curing luting composite (Variolink II, Ivoclar Vivadent). One slice (1.7 mm) of each root third of cemented GFP (cervical, middle, and apical) was submitted to push-out testing. Failure modes of all specimens were classified as: adhesive failure between resin cement and post; adhesive failure between dentin and resin cement; cohesive failure within resin cement, post or dentin; and mixed failure. The data were analyzed with two-way ANOVA and Tukey’s test (a=0.05). The highest bond strength values were presented for the P2 and PC groups. There was no statistically significant difference between the GFP thirds in each group. The groups P2, P5, and PC showed predominantly adhesive failure. For P1, the most prevalent type of failure was adhesive between resin cement and post. It may be concluded that a glass fiber post that is well adapted to the root canal presents higher bond strength values, regardless of GFP third.


2018 ◽  
Vol 43 (2) ◽  
pp. E72-E80 ◽  
Author(s):  
M Durski ◽  
M Metz ◽  
G Crim ◽  
S Hass ◽  
R Mazur ◽  
...  

SUMMARY The purpose of this study was to evaluate the push-out bond strength of two different adhesive cements (total etch and self-adhesive) for glass fiber post (GFP) cementation in simulated, long-term service (thermocycling) when the root canal is treated with chlorhexidine before cementation. One hundred twenty premolar specimens with a single root canal were selected, endodontically treated, and shaped for GFP cementation (n=120). The specimens were randomly placed into one of 12 groups (10 specimens each) according to cement (T = total-etch RelyX ARC or S = self-adhesive RelyX Unicem), treatment with chlorhexidine (N or Y: without or with), and number of thermal cycles (00, 20, or 40: 0, or 20,000 or 40,000 cycles): 1. TN00, 2. TN20, 3. TN40, 4. TY00, 5. TY20, 6. TY40, 7. SN00, 8. SN20, 9. SN40, 10. SY00, 11. SY20, 12. SY40. The root of each specimen was cut perpendicular to the vertical axis, yielding six 1.0 mm-thick sections. A push-out bond strength test was performed followed by statistical analysis using a factorial analysis of variance. Pairwise comparisons of significant factor interactions were adjusted using the Tukey test. Significant differences of push-out bond strengths were found in the four main effects (resin cement [p&lt;0.0001], treatment with chlorhexidine [p&lt;0.0001], number of cycles [p&lt;0.0001], and root third [p&lt;0.0001]) and all interactions (p&lt;0.05 for all). Both resin cements produced higher bond strength in the cervical third followed by the middle third, and lower values were detected in the apical third. Additionally, the results suggest that the use of an additional disinfection treatment with chlorhexidine before the cement application produced the highest push-out bond strength regardless of root third. Further, the thermocycling simulation decreased the bond strength for both resin cements long-term when the chlorhexidine was not applied before cementation. However, when the root canal was treated with chlorhexidine and the fiber post was cemented with self-adhesive cement, the bond strength increased after 0, 20,000 and 40,000 cycles.


Author(s):  
Ebru Özsezer Demiryürek ◽  
Şafak Külünk ◽  
Duygu Saraç ◽  
Gözde Yüksel ◽  
Bilinç Bulucu

2013 ◽  
Vol 38 (5) ◽  
pp. 555-564 ◽  
Author(s):  
GM Gomes ◽  
OMM Gomes ◽  
A Reis ◽  
JC Gomes ◽  
AD Loguercio ◽  
...  

SUMMARY Objectives To evaluate the influence of operator experience (dentist vs student) and cementation system (Adper Scotchbond Multi-Purpose [SBMP] + RelyX ARC [1]; Adper Single Bond 2 [SB] + RelyX ARC [2] and RelyX U100 [3]) on the push-out bond strength (BS) of fiber post to radicular dentin. Materials and Methods The roots of 48 extracted human maxillary central incisors were prepared and divided into six groups (n=8), according to combination of the above factors. Glass fiber posts were cemented in accordance with the instructions of the manufacturer of each cementation system. After water storage at 37°C for one week, the roots were cross-sectioned into six 1-mm thick slices and the push-out test was performed (0.5 mm/min). Data were statistically analyzed by two-way analysis of variance and Tukey tests (α=0.05). The BS results obtained by dentist and student for each cementation system were compared using the Student t-test (α=0.05). Results Higher BS means were observed for the expert operators, irrespective of the cementation system used (p=0.006). RelyX U100 showed the highest bond strength, but it did not differ from SBMP + RelyX ARC. The Student t-test revealed that only RelyX U100 was not affected by the operator's experience. Conclusion Within the limitations of this in vitro study, it can be concluded that the self-adhesive cement RelyX U100 showed the highest bond strength to the root canal in the student's group, and its performance was not affected by the operator's experience.


Sign in / Sign up

Export Citation Format

Share Document