scholarly journals Microstructure, Texture and Microhardness Evolution during Annealing Heat Treatment and Mechanical Behavior of the Niobium-Stabilized Ferritic Stainless Steel ASTM 430 and Niobium-Titanium-Stabilized Ferritic Stainless Steel ASTM 439: a Comparative Study

2017 ◽  
Vol 20 (6) ◽  
pp. 1650-1657 ◽  
Author(s):  
Leandro Paulo de Almeida Reis Tanure ◽  
Cláudio Moreira de Alcântara ◽  
Tarcísio Reis de Oliveira ◽  
Dagoberto Brandão Santos ◽  
Berenice Mendonça Gonzalez
Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 753 ◽  
Author(s):  
Kanwal Chadha ◽  
Yuan Tian ◽  
John Spray ◽  
Clodualdo Aranas

In this work, the microstructural features and mechanical properties of an additively manufactured 316L stainless steel have been determined. Three types of samples were characterized: (i) as printed (AP), (ii) annealing heat treated (AHT), and (iii) hot isostatic pressed and annealing heat treated (HIP + AHT). Microstructural analysis reveals that the AP sample formed melt pool boundaries with nano-scale cellular structures. These structures disappeared after annealing heat treatment and hot isostatic pressing. The AP and AHT samples have similar grain morphologies; however, the latter has a lower dislocation density and contains precipitates. Conversely, the HIP + AHT sample displays polygon-shaped grains with twin structures; a completely different morphology compared to the first two samples. Optical micrography reveals that the application of hot isostatic pressing reduces the porosity generated after laser processing. The tensile strengths of all the samples are comparable (about 600 MPa); however, the elongation of the HIP + AHT sample (48%) was superior to that of other two samples. The enhanced ductility of the HIP + AHT sample, however, resulted in lower yield strength. Based on these findings, annealing heat treatment after hot isostatic pressing was found to improve the ductility of as-printed 316L stainless steel by as much as 130%, without sacrificing tensile strength, but the sample may have a reduced (40%) yield strength. The tensile strength determined here has been shown to be higher than that of the hot isostatic pressed, additively manufactured 316L stainless steel available from the literature.


2014 ◽  
Vol 20 (2) ◽  
pp. 97-106
Author(s):  
Amirreza Bakhtiari ◽  
I. Berenjani

The effect of annealing heat treatment on pitting resistance of stainless steel type 316L has been studied using Tafel polarization and ASTM G150 for estimating of the pitting potential and CPT, respectively. The materials were tested in 3.5% NaCl solution. The chemical composition of the material was analyzed via optical emission spectrometry. It was found that the sample treated at 940°C shows better pitting corrosion resistance than samples treated at 520°C and 820°C. The treatment at 940°C produced two types of morphologies, austenitic-ferritic matrix with δ-ferrite and only small amount of the σ phase. In the range up to 820°C the σ phase embedded in the γ phase matrix and at δ/γ interface was causing brittleness of the material and aggravated corrosion resistance. The treatment at 940°C produced the microstructure which prevented the corrosion attack to develop. It was revealed that the pitting size in samples treated at 520°C and 820°C is greater than that at 940°C. In addition, depth of pitting has been considered as a factor of pitting corrosion resistance. The depth of pitting in sample treated at 940°C is low since the pitting is almost superficial, while the pitting size in samples treated in 520°C and 820°C is higher and deeper. 


2003 ◽  
Vol 21 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Kazuhiro KIMURA ◽  
Takashi WATANABE ◽  
Hiromichi HONGO ◽  
Masayoshi YAMAZAKI ◽  
Jun-ichi KINUGAWA ◽  
...  

2020 ◽  
Vol 1001 ◽  
pp. 207-211
Author(s):  
Xing Xing Tong ◽  
Xue Wen Tong

In this paper, there are tow part of module for predicting the Annealing heat treatments of Zr tube. The artificial neural network (ANN) were used for relationship between mechanical property and annealing parameters. The genetic algorithm (GA) were used for Annealing heat treatments of Zr tube. The best ANN network architecture is 2-8-3, and the optimum values of momentum factor is 0.8 while the Crossover is also 0.8 by ANN-GA, which can be efficiently track the effect of annealing Heat treatment on properties for Zr-4 alloy. Keywords: Zr alloy, Heat Treatment, mechanical propert


Sign in / Sign up

Export Citation Format

Share Document