scholarly journals Effect of Cold Rolling Path on the Deformation Textures Of C10300 Copper

2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Caio Rodrigues de Souza ◽  
Eduardo Franco de Monlevade
2005 ◽  
Vol 495-497 ◽  
pp. 375-380
Author(s):  
Janusz Ryś ◽  
Wiktoria Ratuszek ◽  
Małgorzata Witkowska

A development of deformation textures was examined in ferritic-austenitic duplex type steel subjected to cold-rolling within the range up to 90% of reduction by applying different rolling schedules. The investigations included X-ray phase analysis, texture measurements and microstructure observations by means of light microscopy. The experimental results indicate at the occurrence of strong initial textures in both component phases after preliminary thermo-mechanical treatment. Formation of the ferrite-austenite banded structure in the course of rolling along with the stability of major texture components, related by Bain orientation relationship, exert considerable effect on the development of the ferrite and austenite rolling textures.


2010 ◽  
Vol 163 ◽  
pp. 145-150
Author(s):  
Janusz Ryś ◽  
Wiktoria Ratuszek

The present research is a part of project which concerns a deformation behavior of duplex type ferritic-austenitic stainless steels. This paper focuses on the examination of ferrite and austenite textures formed upon thermo-mechanical treatment and deformation textures developed during cold-rolling of super-duplex stainless steel sheet. The character and stability of the textures observed in both phases over a wide deformation range are the result of two-phase morphology formed upon hot- and subsequent cold-rolling. The specific band-like morphology of the ferrite-austenite structure creates different conditions for plastic deformation due to the interaction of both phases and considerably constrained lattice rotations. That is why the processes governing the texture formation in duplex steels are supposed to change in comparison to single phase steels affecting final rolling textures of ferrite and austenite.


2007 ◽  
Vol 539-543 ◽  
pp. 3424-3429 ◽  
Author(s):  
Y.H. Sha ◽  
S.C. Zhou ◽  
Wei Pei ◽  
Liang Zuo

The influences of different rolling modes and speed ratios on cold rolling texture development, and the characteristics of recrystallization textures after ordinary annealing as well as magnetic annealing have been investigated for non-oriented silicon steel. Results show that the through-thickness deformation textures were effectively changed by asymmetric cold rolling even in the case of small speed ratios, and the recrystallization textures were modified with the enhanced favorable {100} and η (<100>//RD) texture components by magnetic annealing. Much improved magnetic properties can be obtained through optimization of asymmetric rolling and annealing parameters. Thus, application of asymmetric cold rolling and magnetic annealing might open up new possibilities for texture control in high-grade silicon steel production.


2020 ◽  
Vol 59 (1) ◽  
pp. 252-263
Author(s):  
Lixia Wang ◽  
Xingpin Chen ◽  
Tianhong Luo ◽  
Haitao Ni ◽  
Lin Mei ◽  
...  

AbstractThe microstructure and texture in pure nickel were investigated during multi-step cross cold rolling (CCR) and subsequent annealing. It was found that the deformation texture in the CCR nickel was dominated by Brass and rotated Brass about normal direction (ND) (BsND) texture components, along with marginal cube textures. The resulted deformation textures had a significant effect on the recrystallization behavior. Annealing of the CCR nickel at 550°C for 1 h led to the formation of dominant <012> // ND fiber accompanied by minor rotated cube textures, rather than strong cube texture. Increasing the annealing temperature up to 800°C resulted in further enhancement of <012> // ND fiber textures. The possible reasons for recrystallization behavior in annealed CCR sample were discussed based on in-situ annealing experiments from two aspects of oriented nucleation and oriented growth theories.


Author(s):  
O.T. Woo ◽  
G.J.C. Carpenter

To study the influence of trace elements on the corrosion and hydrogen ingress in Zr-2.5 Nb pressure tube material, buttons of this alloy containing up to 0.83 at% Fe were made by arc-melting. The buttons were then annealed at 973 K for three days, furnace cooled, followed by ≈80% cold-rolling. The microstructure of cold-worked Zr-2.5 at% Nb-0.83 at% Fe (Fig. 1) contained both β-Zr and intermetallic precipitates in the α-Zr grains. The particles were 0.1 to 0.7 μm in size, with shapes ranging from spherical to ellipsoidal and often contained faults. β-Zr appeared either roughly spherical or as irregular elongated patches, often extending to several micrometres.The composition of the intermetallic particles seen in Fig. 1 was determined using Van Cappellen’s extrapolation technique for energy dispersive X-ray analysis of thin metal foils. The method was employed to avoid corrections for absorption and fluorescence via the Cliff-Lorimer equation: CA/CB = kAB · IA/IB, where CA and CB are the concentrations by weight of the elements A and B, and IA and IB are the X-ray intensities; kAB is a proportionality factor.


Author(s):  
W. A. Chiou ◽  
N. L. Jeon ◽  
Genbao Xu ◽  
M. Meshii

For many years amorphous metallic alloys have been prepared by rapid quenching techniques such as vapor condensation or melt quenching. Recently, solid-state reactions have shown to be an alternative for synthesizing amorphous metallic alloys. While solid-state amorphization by ball milling and high energy particle irradiation have been investigated extensively, the growth of amorphous phase by cold-rolling has been limited. This paper presents a morphological and structural study of amorphization of Cu and Ti foils by rolling.Samples of high purity Cu (99.999%) and Ti (99.99%) foils with a thickness of 0.025 mm were used as starting materials. These thin foils were cut to 5 cm (w) × 10 cm (1), and the surface was cleaned with acetone. A total of twenty alternatively stacked Cu and Ti foils were then rolled. Composite layers following each rolling pass were cleaned with acetone, cut into half and stacked together, and then rolled again.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Sign in / Sign up

Export Citation Format

Share Document